Mitigation of backgrounds from cosmogenic 137 Xe in xenon gas experiments using 3 He neutron capture

\Xe{136} is used as the target medium for many experiments searching for \bbnonu. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of \Xe{137} created by the capture of neutrons on \Xe{136}. This isotope decays via beta decay with a half-life of 3.8 minutes and a \Qb\ of $\sim$4.16 MeV. This work proposes and explores the concept of adding a small percentage of \He{3} to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from \Xe{137} activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.

[1]  A. A. Denisenko,et al.  Radio frequency and DC high voltage breakdown of high pressure helium, argon, and xenon , 2019, Journal of Instrumentation.

[2]  A. A. Denisenko,et al.  Barium Tagging with Selective, Dry-Functional, Single Molecule Sensitive On-Off Fluorophores for the NEXT Experiment , 2019, 1909.04677.

[3]  P. Artal,et al.  Towards a background-free neutrinoless double beta decay experiment based on a fluorescent bicolor sensor , 2019, 1909.02782.

[4]  R. Webb,et al.  Electroluminescence Yield in low-diffusion Xe-He gas mixtures , 2019 .

[5]  A. K. Soma,et al.  Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. , 2019, Physical review letters.

[6]  R. Webb,et al.  Radiogenic backgrounds in the NEXT double beta decay experiment , 2019, Journal of High Energy Physics.

[7]  R. Webb,et al.  Energy calibration of the NEXT-White detector with 1% resolution near Qββ of 136Xe , 2019, Journal of High Energy Physics.

[8]  R. Webb,et al.  Demonstration of the event identification capabilities of the NEXT-White detector , 2019, Journal of High Energy Physics.

[9]  A. A. Denisenko,et al.  Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay , 2019, Scientific Reports.

[10]  A. Goldschmidt,et al.  Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures , 2019, Journal of Instrumentation.

[11]  A. D. Ludovico,et al.  Modulations of the cosmic muon signal in ten years of Borexino data , 2018, Journal of Cosmology and Astroparticle Physics.

[12]  R. Webb,et al.  Electroluminescence TPCs at the thermal diffusion limit , 2018, Journal of High Energy Physics.

[13]  B. J. P. Jones,et al.  Electron drift properties in high pressure gaseous xenon , 2018, Journal of Instrumentation.

[14]  R. Webb,et al.  Calibration of the NEXT-White detector using 83mKr decays , 2018, Journal of Instrumentation.

[15]  R. Q. Wright,et al.  ENDF/B-VIII.0: The 8 th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data , 2018 .

[16]  L. M. Moutinho,et al.  Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging. , 2017, Physical Review Letters.

[17]  L. M. Moutinho,et al.  Helium–Xenon mixtures to improve the topological signature in high pressure gas xenon TPCs , 2017, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[18]  A. Hime,et al.  Increasing the sensitivity of LXe TPCs to dark matter by doping with helium or neon , 2017 .

[19]  B. Jones,et al.  Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay , 2016, 1609.04019.

[20]  M. Decowski,et al.  Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.

[21]  J. Ullmann,et al.  Measurement of neutron capture on $^{136}$Xe , 2016, 1605.05794.

[22]  Dennis H. Wright,et al.  The Geant4 Bertini Cascade , 2015 .

[23]  P. Fierlinger,et al.  Cosmogenic backgrounds to 0νββ in EXO-200 , 2015, 1512.06835.

[24]  L. M. Moutinho,et al.  Sensitivity of NEXT-100 to neutrinoless double beta decay , 2015, 1511.09246.

[25]  L. M. Moutinho,et al.  First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment , 2015, 1507.05902.

[26]  V. Vlachoudis,et al.  The FLUKA Code: Developments and Challenges for High Energy and Medical Applications , 2014 .

[27]  N. Yahlali,et al.  Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array , 2013, 1306.0471.

[28]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[29]  Kenneth E. Conlin,et al.  3He and BF3 neutron detector pressure effect and model comparison , 2011 .

[30]  D. R. Artusa,et al.  Sensitivity and Discovery Potential of CUORE to Neutrinoless Double-Beta Decay , 2011, 1109.0494.

[31]  Daniel Morgan,et al.  The Helium-3 Shortage: Supply, Demand, and Options for Congress , 2010 .

[32]  Grace Parraga,et al.  Imaging of lung function using hyperpolarized helium‐3 magnetic resonance imaging: Review of current and emerging translational methods and applications , 2010, Journal of magnetic resonance imaging : JMRI.

[33]  Richard B. Bilder A Legal Regime for the Mining of Helium-3 on the Moon: U.S. Policy Options , 2009 .

[34]  D. Nygren High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search , 2009 .

[35]  S. Collaboration Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory , 2009, 0902.2776.

[36]  V. A. Kudryavtsev,et al.  Muon simulation codes MUSIC and MUSUN for underground physics , 2008, Comput. Phys. Commun..

[37]  G. A. Cox-Mobrand,et al.  An array of low-background 3He proportional counters for the Sudbury Neutrino Observatory , 2007, 0705.3665.

[38]  Said F. Mughabghab,et al.  Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections. Z=1-100 , 2006 .

[39]  A. Ferrari,et al.  FLUKA: A Multi-Particle Transport Code , 2005 .

[40]  A. Heikkinen,et al.  Bertini intra-nuclear cascade implementation in Geant4 , 2003, nucl-th/0306008.

[41]  G. Kulcinski,et al.  Lunar Source of 3He for Commercial Fusion Power , 1986 .

[42]  G. Harp,et al.  Medium energy intranuclear cascade calculations: a comparative study , 1972 .

[43]  H. Bertini Intranuclear-cascade calculation of the secondary nucleon spectra from nucleon-nucleus interactions in the energy range 340 to 2900 mev and comparisons with experiment , 1969 .

[44]  J. Als-Nielsen,et al.  Slow Neutron Cross Sections for He 3 , B, and Au , 1964 .

[45]  H. Bertini Low-Energy Intranuclear Cascade Calculation , 1963 .

[46]  J. E. Simmons,et al.  ELASTIC SCATTERING OF FAST NEUTRONS BY TRITIUM AND He$sup 3$ , 1960 .

[47]  R. L. Macklin,et al.  Total Neutron Yields from Light Elements under Proton and Alpha Bombardment , 1959 .

[48]  T. Skyrme,et al.  Helium‐3 Filled Proportional Counter for Neutron Spectroscopy , 1955 .

[49]  P. R. Tunnicliffe,et al.  Boron trifluoride proportional counters. , 1950, The Review of scientific instruments.

[50]  E SEGRE,et al.  Boron trifluoride neutron detector for low neutron intensities. , 1947, The Review of scientific instruments.

[51]  S. A. Korff,et al.  Neutron Measurements with Boron-Trifluoride Counters , 1939 .

[52]  Javier Ignacio Muñoz Vidal The next path to neutrino inverse hierarchy , 2018 .

[53]  W. Marsden I and J , 2012 .

[54]  A. Dell'Acqua,et al.  Geant4—a simulation toolkit , 2003 .

[55]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[56]  G. Tastevin Optically polarized helium-3 for N.M.R. imaging in medicine , 2000 .

[57]  L. Taylor Helium-3 on the Moon: Model Assumptions and Abundances , 1994 .