Power-dependent Raman analysis of highly strained Si nanobridges.

Strain analysis of complex three-dimensional nanobridges conducted via Raman spectroscopy requires careful experimentation and data analysis supported by simulations. A method combining micro-Raman spectroscopy with finite element analysis is presented, enabling a detailed understanding of strain-sensitive Raman data measured on Si nanobridges. Power-dependent measurements are required to account for the a priori unknown scattering efficiency related to size and geometry. The experimental data is used to assess the validity of previously published phonon deformation potentials.

[1]  Yuji Yamamoto,et al.  Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach , 2013 .

[2]  I. Wolf Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits , 1996 .

[3]  P. Eklund,et al.  Confined phonons in Si nanowires. , 2005, Nano letters.

[4]  M. Roukes,et al.  Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. , 2007, Nature nanotechnology.

[5]  G. Capellini,et al.  Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process. , 2014, Optics express.

[6]  Meera Chandrasekhar,et al.  Effects of interband excitations on Raman phonons in heavily doped n − Si , 1978 .

[7]  S. Kawata,et al.  Mapping the "forbidden" transverse-optical phonon in single strained silicon (100) nanowire. , 2011, Nano letters.

[8]  R. C. Picu,et al.  Strain and size effects on heat transport in nanostructures , 2003 .

[9]  M. Lagally,et al.  Influence of strain on the conduction band structure of strained silicon nanomembranes. , 2008, Physical review letters.

[10]  Validating Raman spectroscopic calibrations of phonon deformation potentials in silicon single crystals: A comparison between ball-on-ring and micro-indentation methods , 2011 .

[11]  R. Spolenak,et al.  Scanning X-ray strain microscopy of inhomogeneously strained Ge micro-bridges , 2013, Journal of synchrotron radiation.

[12]  Yiying Wu,et al.  Thermal conductivity of individual silicon nanowires , 2003 .

[13]  M. Cardona,et al.  Piezo-Raman measurements and anharmonic parameters in silicon and diamond. , 1990, Physical review. B, Condensed matter.

[14]  J. Connell,et al.  Silicon nanowire polytypes: identification by Raman spectroscopy, generation mechanism, and misfit strain in homostructures. , 2011, ACS nano.

[15]  M. Reiche,et al.  The complex evolution of strain during nanoscale patterning of 60 nm thick strained silicon layer directly on insulator , 2009 .

[16]  T. R. Hart,et al.  Temperature Dependence of Raman Scattering in Silicon , 1970 .

[17]  J. Menéndez,et al.  Polarized off-axis Raman spectroscopy: A technique for measuring stress tensors in semiconductors , 1999 .

[18]  Ingrid De Wolf,et al.  Stress measurements in silicon devices through Raman spectroscopy: Bridging the gap between theory and experiment , 1996 .

[19]  C. Leinenbach,et al.  Thermomechanical analysis of residual stresses in brazed diamond metal joints using Raman spectroscopy and finite element simulation , 2012 .

[20]  Joachim M. Buhmann,et al.  Fully Automatic Registration of Electron Microscopy Images with High and Low Resolution , 2007, Microscopy and Microanalysis.

[21]  Ze Zhang,et al.  Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects , 2000 .

[22]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[23]  Xingzhong Zhao,et al.  Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays , 2005 .

[24]  John Robertson,et al.  Raman spectroscopy of silicon nanowires , 2003 .

[25]  Fred H. Pollak,et al.  Stress-Induced Shifts of First-Order Raman Frequencies of Diamond- and Zinc-Blende-Type Semiconductors , 1972 .

[26]  Shu‐Lin Zhang,et al.  Raman spectral study of silicon nanowires , 1999 .

[27]  G. Doerk,et al.  Single nanowire thermal conductivity measurements by Raman thermography. , 2010, ACS nano.

[28]  S. Prawer,et al.  Confocal Raman strain mapping of isolated single CVD diamond crystals , 1998 .

[29]  R. Ossikovski,et al.  Theory and experiment of large numerical aperture objective Raman microscopy: application to the stress‐tensor determination in strained cubic materials , 2008 .

[30]  A. Boe,et al.  New On-Chip Nanomechanical Testing Laboratory - Applications to Aluminum and Polysilicon Thin Films , 2009, Journal of Microelectromechanical Systems.

[31]  B. Tell,et al.  Raman Effect in Zinc Oxide , 1966 .

[32]  J. Williams The significance of ion implantation induced stress in silicon , 1977 .

[33]  J. Raskin,et al.  Raman measurements of uniaxial strain in silicon nanostructures , 2013 .

[34]  Jérôme Faist,et al.  Analysis of enhanced light emission from highly strained germanium microbridges , 2013, Nature Photonics.

[35]  MicroRaman Spectroscopy of Si Nanowires: Influence of Size , 2012 .

[36]  Scott E. Thompson,et al.  Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs , 2009 .

[37]  K. Ohyu,et al.  MeV-ion-induced damage in Si and its annealing , 1991 .

[38]  S. Balaji,et al.  Phonon confinement studies in nanocrystalline anatase‐TiO2 thin films by micro Raman spectroscopy , 2006 .

[39]  Mika Prunnila,et al.  Observations of confined acoustic phonons in silicon membranes , 2004 .

[40]  Chih-Wen Liu,et al.  Comprehensive study of the Raman shifts of strained silicon and germanium , 2009 .

[41]  Kurt Maute,et al.  Strain effects on the thermal conductivity of nanostructures , 2010 .

[42]  Arun Majumdar,et al.  Thermal conductance of thin silicon nanowires. , 2008, Physical review letters.

[43]  J Gobrecht,et al.  Top-down fabricated silicon nanowires under tensile elastic strain up to 4.5% , 2012, Nature Communications.

[44]  M. Lagally,et al.  Conduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes , 2011 .

[45]  A. Diaz,et al.  Three-dimensional high-resolution quantitative microscopy of extended crystals. , 2011, Nature communications.

[46]  S. Kawata,et al.  UV-Raman imaging of the in-plane strain in single ultrathin strained silicon-on-insulator patterned structure , 2010 .

[47]  Yasuhiko Ishikawa,et al.  Strain-induced band gap shrinkage in Ge grown on Si substrate , 2003 .

[48]  Mats-Erik Pistol,et al.  Probing strain in bent semiconductor nanowires with Raman spectroscopy. , 2010, Nano letters.

[49]  G. Abstreiter,et al.  Strain at SiSiO2 interfaces studied by Micron-Raman spectroscopy , 1989 .

[50]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[51]  Y. Bogumilowicz,et al.  Engineering strained silicon on insulator wafers with the Smart CutTM technology , 2004 .

[52]  Alexei A. Maradudin,et al.  A lattice theory of morphic effects in crystals of the diamond structure , 1970 .

[53]  J. Schweitz,et al.  Influence of surface coatings on elasticity, residual stresses, and fracture properties of silicon microelements , 1989 .

[54]  M. Rajalakshmi,et al.  Optical phonon confinement in zinc oxide nanoparticles , 2000 .

[55]  S. Datta,et al.  Nanoscale Transistors—Just Around the Gate? , 2013, Science.