High Order Finite Difference Multi-resolution WENO Method for Nonlinear Degenerate Parabolic Equations

In this paper, we propose a new finite difference weighted essentially non-oscillatory (WENO) scheme for nonlinear degenerate parabolic equations which may contain non-smooth solutions. An alternative formulation is designed to approximate the second derivatives in a conservative form. In this formulation, the odd order derivatives at half points are used to construct the numerical flux, instead of the usual practice of reconstruction. Moreover, the multi-resolution WENO scheme is designed to circumvent the negative ideal weights and mapped nonlinear weights that appear when applying the standard WENO idea. We will describe the scheme formulation and present numerical tests for one- and two-dimensional, demonstrating the designed high order accuracy and non-oscillatory performance of the schemes constructed in this paper.

[1]  Ricardo H. Nochetto,et al.  A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..

[2]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[3]  Ricardo H. Nochetto,et al.  Approximation of Degenerate Parabolic Problems Using Numerical Integration , 1988 .

[4]  Yuanyuan Liu,et al.  High Order Finite Difference WENO Schemes for Nonlinear Degenerate Parabolic Equations , 2011, SIAM J. Sci. Comput..

[5]  Peletier,et al.  Nonstationary filtration in partially saturated porous media , 1982 .

[6]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[7]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[8]  D. Aronson The porous medium equation , 1986 .

[9]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[10]  Willi Jäger,et al.  On Solutions to Nonlinear Reaction–Diffusion–Convection Equations with Degenerate Diffusion , 2001 .

[11]  Yan Jiang,et al.  An Alternative Formulation of Finite Difference Weighted ENO Schemes with Lax-Wendroff Time Discretization for Conservation Laws , 2013, SIAM J. Sci. Comput..

[12]  Chi-Wang Shu,et al.  A new type of third-order finite volume multi-resolution WENO schemes on tetrahedral meshes , 2020, J. Comput. Phys..

[13]  Mehdi Dehghan,et al.  A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations , 2013, Comput. Phys. Commun..

[14]  M Muskat,et al.  THE FLOW OF HOMOGENEOUS FLUIDS THROUGH POROUS MEDIA: ANALOGIES WITH OTHER PHYSICAL PROBLEMS , 1937 .

[15]  Ricardo H. Nochetto,et al.  Energy error estimates for a linear scheme to approximate nonlinear parabolic problems , 1987 .

[16]  Jun Zhu,et al.  A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes , 2019, J. Comput. Phys..

[17]  Todd Arbogast,et al.  Finite volume WENO schemes for nonlinear parabolic problems with degenerate diffusion on non-uniform meshes , 2019, J. Comput. Phys..

[18]  Yanmeng Wang,et al.  A new type of increasingly high-order multi-resolution trigonometric WENO schemes for hyperbolic conservation laws and highly oscillatory problems , 2020 .

[19]  M. Muskat The Flow of Fluids Through Porous Media , 1937 .

[20]  Yan Jiang,et al.  Kernel Based High Order “Explicit” Unconditionally Stable Scheme for Nonlinear Degenerate Advection-Diffusion Equations , 2017, Journal of Scientific Computing.

[21]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[22]  Qiang Zhang,et al.  Numerical Simulation for Porous Medium Equation by Local Discontinuous Galerkin Finite Element Method , 2009, J. Sci. Comput..

[23]  Gabriella Puppo,et al.  Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..

[24]  Francis Filbet,et al.  A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations , 2011, SIAM J. Sci. Comput..

[25]  Haim Brezis,et al.  A numerical method for solving the problem $u_t - \Delta f (u) = 0$ , 1979 .

[26]  Felix Otto,et al.  L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .

[27]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[28]  Gabriella Puppo,et al.  High-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems , 2006, SIAM J. Numer. Anal..

[29]  Yan Jiang,et al.  Free-stream preserving finite difference schemes on curvilinear meshes , 2014 .

[30]  S. E. Buckley,et al.  Mechanism of Fluid Displacement in Sands , 1942 .

[31]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[32]  Shaoqiang Tang,et al.  Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems , 2004, Math. Comput..

[33]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[34]  Jun Zhu,et al.  A new type of multi-resolution WENO schemes with increasingly higher order of accuracy , 2018, J. Comput. Phys..

[35]  Mengping Zhang,et al.  On the positivity of linear weights in WENO approximations , 2009 .

[36]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .