Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements

As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)‐encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non‐conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements.

[1]  Roderic D. M. Page,et al.  On The Dangers Of Aligning RNA Sequences Using “Conserved” Motifs , 2007 .

[2]  B. Jacq,et al.  Sequence and secondary structure of the central domain ofDrosophila 26S rRNA: A universal model for the central domain of the large rRNA containing the region in which the central break may happen , 1989, Journal of Molecular Evolution.

[3]  The Chinese Human Genome Sequencing Consortium Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[4]  Ying Wang,et al.  Insights into social insects from the genome of the honeybee Apis mellifera , 2006, Nature.

[5]  J. Boore,et al.  The mitochondrial genome of the entomophagous endoparasite Xenos vesparum (Insecta: Strepsiptera). , 2006, Gene.

[6]  Joseph J Gillespie,et al.  Relationships of Exodontiella, a non‐alysiine, exodont member of the family Braconidae (Insecta, Hymenoptera) , 2006 .

[7]  Joseph J Gillespie,et al.  An evaluation of ensign wasp classification (Hymenoptera: Evaniidae) based on molecular data and insights from ribosomal RNA secondary structure , 2006 .

[8]  Guy Baele,et al.  An improved statistical method for detecting heterotachy in nucleotide sequences. , 2006, Molecular biology and evolution.

[9]  R. Gutell,et al.  A structural model for the large subunit of the mammalian mitochondrial ribosome. , 2006, Journal of molecular biology.

[10]  B. Misof,et al.  Identification of evolutionary conserved structural elements in the mt SSU rRNA of Zygaenoidea (Lepidoptera): A comparative sequence analysis , 2006 .

[11]  V. Hypša Parasite histories and novel phylogenetic tools: alternative approaches to inferring parasite evolution from molecular markers. , 2006, International journal for parasitology.

[12]  S. Cameron,et al.  Extraordinary number of gene rearrangements in the mitochondrial genomes of lice (Phthiraptera: Insecta) , 2006, Insect molecular biology.

[13]  H. Ishikawa,et al.  Nucleotide sequence and presumed secondary structure of the 28S rRNA of pea aphid implication for diversification of insect rRNA , 1996, Journal of Molecular Evolution.

[14]  P. D. Rijk,et al.  Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: Calibration of the molecular clock , 1993, Journal of Molecular Evolution.

[15]  R. Gutell,et al.  Assessing the odd secondary structural properties of nuclear small subunit ribosomal RNA sequences (18S) of the twisted‐wing parasites (Insecta: Strepsiptera) , 2005, Insect molecular biology.

[16]  J. Elser,et al.  The Functional Significance of Ribosomal (r)DNA Variation: Impacts on the Evolutionary Ecology of Organisms , 2005 .

[17]  K. Kojima,et al.  Long-term inheritance of the 28S rDNA-specific retrotransposon R2. , 2005, Molecular biology and evolution.

[18]  K. Yoshizawa,et al.  Aligned 18S for Zoraptera (Insecta): phylogenetic position and molecular evolution. , 2005, Molecular phylogenetics and evolution.

[19]  A. Barbour,et al.  Ticks have R2 retrotransposons but not the consensus transposon target site of other arthropods , 2005, Insect molecular biology.

[20]  D. A. Dunbar,et al.  Heterologous rRNA gene expression: internal fragmentation of Sciara coprophila 28S rRNA within microinjected Xenopus laevis oocytes , 2005, Insect molecular biology.

[21]  Harry F Noller,et al.  RNA Structure: Reading the Ribosome , 2005, Science.

[22]  James B. Munro,et al.  A secondary structural model of the 28S rRNA expansion segments D2 and D3 for Chalcidoid wasps (Hymenoptera: Chalcidoidea). , 2005, Molecular biology and evolution.

[23]  T. Crease,et al.  Selection on the structural stability of a ribosomal RNA expansion segment in Daphnia obtusa. , 2005, Molecular biology and evolution.

[24]  Eric Westhof,et al.  Recurrent structural RNA motifs, Isostericity Matrices and sequence alignments , 2005, Nucleic acids research.

[25]  M. Collins,et al.  Variation in 16S-23S rRNA Intergenic Spacer Regions in Photobacterium damselae: a Mosaic-Like Structure , 2005, Applied and Environmental Microbiology.

[26]  E. J. Murgola,et al.  Interaction of Thiostrepton and Elongation Factor-G with the Ribosomal Protein L11-binding Domain* , 2005, Journal of Biological Chemistry.

[27]  R. Burton,et al.  Unusual structure of ribosomal DNA in the copepod Tigriopus californicus: intergenic spacer sequences lack internal subrepeats. , 2005, Gene.

[28]  T. Rocheford Change in ribosomal DNA intergenic spacer-length composition in maize recurrent selection populations. 1. Analysis of BS13, BSSS, and BSCB1 , 1994, Theoretical and Applied Genetics.

[29]  M. Beye,et al.  In situ hybridization of rDNA on chromosomes of the honeybee,Apis mellifera L. , 1993, Experientia.

[30]  H. Fujiwara,et al.  What causes the aphid 28S rRNA to lack the hidden break? , 1990, Journal of Molecular Evolution.

[31]  D. Wolstenholme,et al.  Drosophila mitochondrial DNA: Conserved sequences in the A+T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA , 2005, Journal of Molecular Evolution.

[32]  R. Schmickel,et al.  The secondary structure of human 28S rRNA: The structure and evolution of a mosaic rRNA gene , 2005, Journal of Molecular Evolution.

[33]  Joseph J Gillespie,et al.  Predicted Secondary Structure for 28S and 18S rRNA from Ichneumonoidea (Insecta: Hymenoptera: Apocrita): Impact on Sequence Alignment and Phylogeny Estimation , 2005, Journal of Molecular Evolution.

[34]  Michael W. Berry,et al.  An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage , 2004, BMC Bioinformatics.

[35]  R. Gutell,et al.  Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs. , 2004, Journal of molecular biology.

[36]  H. Noller The driving force for molecular evolution of translation. , 2004, RNA.

[37]  C. Simon,et al.  Secondary structure, high variability and conserved motifs for domain III of 12S rRNA in the Arthropleona (Hexapoda; Collembola) , 2004, Insect molecular biology.

[38]  R. Gutell,et al.  A secondary structural model of the 28S rRNA expansion segments D2 and D3 from rootworms and related leaf beetles (Coleoptera: Chrysomelidae; Galerucinae) , 2004, Insect molecular biology.

[39]  T. Steitz,et al.  The contribution of metal ions to the structural stability of the large ribosomal subunit. , 2004, RNA.

[40]  H. Noller,et al.  Creating ribosomes with an all-RNA 30S subunit P site. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  K. Kjer,et al.  Phylogeny and host-plant association in the leaf beetle genus Trirhabda LeConte (Coleoptera: Chrysomelidae). , 2004, Molecular phylogenetics and evolution.

[42]  T. Steitz,et al.  The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. , 2004, Journal of molecular biology.

[43]  K. Kjer,et al.  Aligned 18S and insect phylogeny. , 2004, Systematic biology.

[44]  David H Mathews,et al.  Secondary structure models of the 3' untranslated regions of diverse R2 RNAs. , 2004, RNA.

[45]  N. Boucher,et al.  The ribosomal RNA gene promoter and adjacent cis-acting DNA sequences govern plasmid DNA partitioning and stable inheritance in the parasitic protozoan Leishmania. , 2004, Nucleic acids research.

[46]  L. Tsai,et al.  Establishing the rDNA IGS structure of Cannabis sativa. , 2004, Journal of forensic sciences.

[47]  O. Nygård,et al.  Secondary structure of two regions in expansion segments ES3 and ES6 with the potential of forming a tertiary interaction in eukaryotic 40S ribosomal subunits. , 2004, RNA.

[48]  Chung‐Ping Lin,et al.  How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. , 2004, Molecular phylogenetics and evolution.

[49]  H. Ohnishi,et al.  The Structure of a Single Unit of Ribosomal RNA Gene (rDNA) Including Intergenic Subrepeats in the Australian Bulldog Ant Myrmecia croslandi (Hymenoptera: Formicidae) , 2004, Zoological science.

[50]  J. Boore,et al.  The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. , 2004, Molecular biology and evolution.

[51]  K. Kojima,et al.  Cross-genome screening of novel sequence-specific non-LTR retrotransposons: various multicopy RNA genes and microsatellites are selected as targets. , 2003, Molecular biology and evolution.

[52]  C. Schal,et al.  Saltatory Changes in the Structure of the Ribosomal DNA External Transcribed Spacer during the Evolution of Cockroaches of Genus Blattella , 2002, Doklady Biological Sciences.

[53]  A. Austin,et al.  Increased genetic diversity in mitochondrial genes is correlated with the evolution of parasitism in the Hymenoptera , 1995, Journal of Molecular Evolution.

[54]  P. Jordan,et al.  Structural evolution of the Drosophila 5S ribosomal genes , 1995, Journal of Molecular Evolution.

[55]  John M. Hancock The contribution of DNA slippage to eukaryotic nuclear 18S rRNA evolution , 1995, Journal of Molecular Evolution.

[56]  R. Okimoto,et al.  Mitochondrial DNA of the sea anemone, Metridium senile (Cnidaria): Prokaryote-like genes for tRNAf-Met and small-subunit ribosomal RNA, and standard genetic code specificities for AGR and ATA codons , 1994, Journal of Molecular Evolution.

[57]  M. S. Negi,et al.  Structural analysis of two length variants of the rDNA intergenic spacer from Eruca sativa , 1994, Plant Molecular Biology.

[58]  C. Hollenberg,et al.  The organization of the ribosomal RNA genes of Chironomus tentans and some closely related species , 1979, Chromosoma.

[59]  G. Gellissen,et al.  The gene for the large (16S) ribosomal RNA from the Locusta migratoria mitochondrial genome , 2004, Current Genetics.

[60]  Guy Perrière,et al.  The European ribosomal RNA database , 2004, Nucleic Acids Res..

[61]  Jodie J. Yin,et al.  A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes , 2004, Genome Biology.

[62]  G Fleck,et al.  Comparative analysis of mt LSU rRNA secondary structures of Odonates: structural variability and phylogenetic signal , 2003, Insect molecular biology.

[63]  H. Kishino,et al.  Time flies, a new molecular time-scale for brachyceran fly evolution without a clock. , 2003, Systematic biology.

[64]  S. Harris,et al.  Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. , 2003, Molecular phylogenetics and evolution.

[65]  D. Tallamy,et al.  Convergent evolution of cucurbitacin feeding in spatially isolated rootworm taxa (Coleoptera: Chrysomelidae; Galerucinae, Luperini). , 2003, Molecular phylogenetics and evolution.

[66]  M. Dowton,et al.  Rates of gene rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects. , 2003, Molecular biology and evolution.

[67]  J. Macas,et al.  Sequence subfamilies of satellite repeats related to rDNA intergenic spacer are differentially amplified on Vicia sativa chromosomes , 2003, Chromosoma.

[68]  M. V. van Oppen,et al.  Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. , 2003, Molecular biology and evolution.

[69]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[70]  Susanne Schulmeister Simultaneous analysis of basal Hymenoptera (Insecta): introducing robust-choice sensitivity analysis , 2003 .

[71]  E. Westhof,et al.  Analysis of RNA motifs. , 2003, Current opinion in structural biology.

[72]  J. Bond,et al.  AN ANALYSIS OF THE SECONDARY STRUCTURE OF THE MITOCHONDRIAL LARGE SUBUNIT rRNA GENE (16S) IN SPIDERS AND ITS IMPLICATIONS FOR PHYLOGENETIC RECONSTRUCTION , 2003 .

[73]  R. Shao,et al.  The highly rearranged mitochondrial genome of the plague thrips, Thrips imaginis (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. , 2003, Molecular biology and evolution.

[74]  M. N. Schnare,et al.  Discovery and characterization of Acanthamoeba castellanii mitochondrial 5S rRNA. , 2003, RNA.

[75]  R. Gutell,et al.  The lonepair triloop: a new motif in RNA structure. , 2003, Journal of molecular biology.

[76]  O. Nygård,et al.  A possible tertiary rRNA interaction between expansion segments ES3 and ES6 in eukaryotic 40S ribosomal subunits. , 2003, RNA.

[77]  R. Cheke,et al.  Completion of the sequence of the nuclear ribosomal DNA subunit of Simulium sanctipauli, with descriptions of the 18S, 28S genes and the IGS , 2002, Medical and veterinary entomology.

[78]  R. Gutell,et al.  Distribution of rRNA introns in the three-dimensional structure of the ribosome. , 2002, Journal of molecular biology.

[79]  T. Eickbush,et al.  Rates of R1 and R2 retrotransposition and elimination from the rDNA locus of Drosophila melanogaster. , 2002, Genetics.

[80]  An Empirical Analysis of mt 16S rRNA Covarion-Like Evolution in Insects: Site-Specific Rate Variation Is Clustered and Frequently Detected , 2002, Journal of Molecular Evolution.

[81]  Won Kim,et al.  Intragenomic length variation of the ribosomal DNA intergenic spacer in a malaria vector, Anopheles sinensis. , 2002, Molecules and cells.

[82]  R. Page,et al.  Louse (Insecta: Phthiraptera) mitochondrial 12S rRNA secondary structure is highly variable , 2002, Insect molecular biology.

[83]  M. A. Rubio,et al.  Intergenic and external transcribed spacers of ribosomal RNA genes in lizard-infecting Leishmania: molecular structure and phylogenetic relationship to mammal-infecting Leishmania in the subgenus Leishmania (Leishmania). , 2002, Memorias do Instituto Oswaldo Cruz.

[84]  T. Pape,et al.  The Palaeoptera Problem: Basal Pterygote Phylogeny Inferred from 18S and 28S rDNA Sequences , 2002 .

[85]  A. Ivens,et al.  tRNAs in Trypanosoma brucei: Genomic Organization, Expression, and Mitochondrial Import , 2002, Molecular and Cellular Biology.

[86]  R. Belshaw,et al.  Robustness of ancestral state estimates: evolution of life history strategy in ichneumonoid parasitoids. , 2002, Systematic biology.

[87]  V. Ramakrishnan,et al.  Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. , 2002, Journal of molecular biology.

[88]  H. Noller,et al.  Structure of the 70 S ribosome: implications for movement. , 2001, Biochemical Society transactions.

[89]  Martin G. Reese,et al.  Application of a Time-delay Neural Network to Promoter Annotation in the Drosophila Melanogaster Genome , 2001, Comput. Chem..

[90]  T. Eickbush R2 and Related Site-Specific Non-Long Terminal Repeat Retrotransposons , 2002 .

[91]  R. Martin,et al.  Import of nuclear encoded RNAs into yeast and human mitochondria: experimental approaches and possible biomedical applications. , 2002, Genetic engineering.

[92]  Yves Van de Peer,et al.  The European database on small subunit ribosomal RNA , 2002, Nucleic Acids Res..

[93]  Maciej Szymanski,et al.  5S Ribosomal RNA Database , 2002, Nucleic Acids Res..

[94]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[95]  R. Martin,et al.  5 S rRNA and tRNA Import into Human Mitochondria , 2001, The Journal of Biological Chemistry.

[96]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[97]  L. Spremulli,et al.  The Large Subunit of the Mammalian Mitochondrial Ribosome , 2001, The Journal of Biological Chemistry.

[98]  Narayanan Eswar,et al.  Structure of the 80S Ribosome from Saccharomyces cerevisiae—tRNA-Ribosome and Subunit-Subunit Interactions , 2001, Cell.

[99]  R. Rudner,et al.  Variation in 16S‐23S rRNA intergenic spacer regions among Bacillus subtilis 168 isolates , 2001, Molecular microbiology.

[100]  R. Shao,et al.  Increased rate of gene rearrangement in the mitochondrial genomes of three orders of hemipteroid insects. , 2001, Molecular biology and evolution.

[101]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[102]  T. Eickbush,et al.  Dynamics of R1 and R2 elements in the rDNA locus of Drosophila simulans. , 2001, Genetics.

[103]  S C Harvey,et al.  AA.AG@helix.ends: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices. , 2001, Journal of molecular biology.

[104]  M. Dowton,et al.  Intramitochondrial recombination - is it why some mitochondrial genes sleep around? , 2001, Trends in ecology & evolution.

[105]  James M. Carpenter,et al.  The Phylogeny of the Extant Hexapod Orders , 2001, Cladistics : the international journal of the Willi Hennig Society.

[106]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[107]  R. Shao,et al.  Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). , 2001, Molecular biology and evolution.

[108]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[109]  C. Schlötterer,et al.  Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. , 2001, Molecular biology and evolution.

[110]  V. Ramakrishnan,et al.  Crystal structure of an initiation factor bound to the 30S ribosomal subunit. , 2001, Science.

[111]  Yves Van de Peer,et al.  The European Large Subunit Ribosomal RNA database , 2000, Nucleic Acids Res..

[112]  Y Van de Peer,et al.  Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. , 2000, Nucleic acids research.

[113]  R. Gutell,et al.  A story: unpaired adenosine bases in ribosomal RNAs. , 2000, Journal of molecular biology.

[114]  C. Simon,et al.  Secondary structure and conserved motifs of the frequently sequenced domains IV and V of the insect mitochondrial large subunit rRNA gene , 2000, Insect molecular biology.

[115]  R. Page,et al.  Comparative analysis of secondary structure of insect mitochondrial small subunit ribosomal RNA using maximum weighted matching. , 2000, Nucleic acids research.

[116]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[117]  M. N. Schnare,et al.  The 28S-18S rDNA intergenic spacer from Crithidia fasciculata: repeated sequences, length heterogeneity, putative processing sites and potential interactions between U3 small nucleolar RNA and the ribosomal RNA precursor. , 2000, Nucleic acids research.

[118]  T. Bourgoin,et al.  18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera). , 2000, Molecular phylogenetics and evolution.

[119]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[120]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[121]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[122]  C. Polanco,et al.  A comparative study of the structure of the rDNA intergenic spacer of Lens culinaris Medik., and other legume species. , 2000, Genome.

[123]  S. Masta Mitochondrial sequence evolution in spiders: intraspecific variation in tRNAs lacking the TPsiC Arm. , 2000, Molecular biology and evolution.

[124]  C. Simon,et al.  The performance of several multiple-sequence alignment programs in relation to secondary-structure features for an rRNA sequence. , 2000, Molecular biology and evolution.

[125]  A. P. Sidorenko,et al.  Analysis of intraspecies polymorphism in the ribosomal DNA cluster of the cockroach Blattella germanica , 2000, Insect molecular biology.

[126]  Yves Van de Peer,et al.  The European Small Subunit Ribosomal RNA database , 2000, Nucleic Acids Res..

[127]  J. Ng,et al.  PseudoBase: a database with RNA pseudoknots , 2000, Nucleic Acids Res..

[128]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[129]  S. Barker,et al.  The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: fivefold tandem repetition of a coding region. , 1999, Molecular biology and evolution.

[130]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[131]  J. McCutcheon,et al.  A Detailed View of a Ribosomal Active Site The Structure of the L11–RNA Complex , 1999, Cell.

[132]  T. Eickbush,et al.  The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. , 1999, Molecular biology and evolution.

[133]  J. Boore Animal mitochondrial genomes. , 1999, Nucleic acids research.

[134]  A. Austin,et al.  Evolutionary dynamics of a mitochondrial rearrangement "hot spot" in the Hymenoptera. , 1999, Molecular biology and evolution.

[135]  Yves Van de Peer,et al.  Database on the structure of small subunit ribosomal RNA , 1999, Nucleic Acids Res..

[136]  Yves Van de Peer,et al.  Database on the structure of large subunit ribosomal RNA , 1999, Nucleic Acids Res..

[137]  S. Barker,et al.  An unprecedented major rearrangement in an arthropod mitochondrial genome. , 1998, Molecular biology and evolution.

[138]  W. Black,et al.  Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. , 1998, Molecular biology and evolution.

[139]  T. Crease,et al.  The origin and evolution of variable-region helices in V4 and V7 of the small-subunit ribosomal RNA of branchiopod crustaceans. , 1998, Molecular biology and evolution.

[140]  A. Cockburn,et al.  Species-specific repeat units in the intergenic spacer of the ribosomal RNA cistron of Anopheles aquasalis Curry. , 1998, The American journal of tropical medicine and hygiene.

[141]  T. Chiang,et al.  Complete nucleotide sequence of the intergenic spacer between 25S and 17S rDNA in Miscanthus sinensis var. glaber , 1998 .

[142]  E. Schon,et al.  Evidence for the presence of 5S rRNA in mammalian mitochondria. , 1998, Molecular biology of the cell.

[143]  M Friedrich,et al.  Molecular phylogenetics at the Felsenstein zone: approaching the Strepsiptera problem using 5.8S and 28S rDNA sequences. , 1998, Molecular phylogenetics and evolution.

[144]  R. Page,et al.  A different tempo of mitochondrial DNA evolution in birds and their parasitic lice. , 1998, Molecular phylogenetics and evolution.

[145]  T. Crease,et al.  The Unusually Long Small-Subunit Ribosomal RNA of the Crustacean, Daphnia pulex: Sequence and Predicted Secondary Structure , 1998, Journal of Molecular Evolution.

[146]  C. C. Wu,et al.  Analysis of a ribosomal DNA intergenic spacer region from the yellow fever mosquito, Aedes aegypti , 1998, Insect molecular biology.

[147]  K. Kjer Conserved Primary and Secondary Structural Motifs of Amphibian 12S rRNA, Domain III , 1997 .

[148]  D. Tautz,et al.  Evolution and phylogeny of the Diptera: a molecular phylogenetic analysis using 28S rDNA sequences. , 1997, Systematic biology.

[149]  C. Rowell,et al.  The effectiveness of mitochondrial rRNA gene sequences for the reconstruction of the phylogeny of an insect order (Orthoptera). , 1997, Molecular phylogenetics and evolution.

[150]  M. Lynch Mutation accumulation in nuclear, organelle, and prokaryotic transfer RNA genes. , 1997, Molecular biology and evolution.

[151]  R. Belshaw,et al.  A molecular phylogeny of the Aphidiinae (Hymenoptera: Braconidae). , 1997, Molecular phylogenetics and evolution.

[152]  D. Tautz,et al.  An episodic change of rDNA nucleotide substitution rate has occurred during the emergence of the insect order Diptera. , 1997, Molecular biology and evolution.

[153]  J. Palmer,et al.  The mitochondrion that time forgot , 1997, Nature.

[154]  D. Sankoff,et al.  An ancestral mitochondrial DNA resembling a eubacterial genome in miniature , 1997, Nature.

[155]  J. V. Moran,et al.  Many human L1 elements are capable of retrotransposition , 1997, Nature Genetics.

[156]  W C Wheeler,et al.  The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. , 1997, Systematic biology.

[157]  E. Buckler,et al.  The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. , 1997, Genetics.

[158]  Y Van de Peer,et al.  Database on the structure of large ribosomal subunit RNA. , 1997, Nucleic acids research.

[159]  D. Turner,et al.  Secondary structure model of the RNA recognized by the reverse transcriptase from the R2 retrotransposable element. , 1997, RNA.

[160]  Yves Van de Peer,et al.  Database on the structure of small ribosomal subunit RNA , 1998, Nucleic Acids Res..

[161]  K. Kjer,et al.  Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16S ribosomal RNA gene , 1996, Insect molecular biology.

[162]  T. Eickbush,et al.  Downstream 28S gene sequences on the RNA template affect the choice of primer and the accuracy of initiation by the R2 reverse transcriptase , 1996, Molecular and cellular biology.

[163]  R. Gutell,et al.  Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23 S-like) ribosomal RNA. , 1996, Journal of molecular biology.

[164]  D. Penny,et al.  Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA. , 1996, Molecular biology and evolution.

[165]  M. Lynch Mutation accumulation in transfer RNAs: molecular evidence for Muller's ratchet in mitochondrial genomes. , 1996, Molecular biology and evolution.

[166]  K. Holsinger,et al.  Among-site rate variation and phylogenetic analysis of 12S rRNA in sigmodontine rodents. , 1995, Molecular biology and evolution.

[167]  K. Kjer,et al.  Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. , 1995, Molecular phylogenetics and evolution.

[168]  Timothy M. Collins,et al.  Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements , 1995, Nature.

[169]  M. Digilio,et al.  Characterization of Aphidius ervi (Hymenoptera, Braconidae) ribosomal genes and identification of site-specific insertion elements belonging to the non-LTR retrotransposon family. , 1995, Insect biochemistry and molecular biology.

[170]  W. Lathe,et al.  R1 and R2 retrotransposable elements of Drosophila evolve at rates similar to those of nuclear genes. , 1995, Genetics.

[171]  T. Eickbush,et al.  Vertical transmission of the retrotransposable elements R1 and R2 during the evolution of the Drosophila melanogaster species subgroup. , 1995, Genetics.

[172]  V. Erdmann,et al.  The primary structure of Harpalus rufipes 5S ribosomal RNA: a contribution for understanding insect evolution. , 1995, Molecular biology reports.

[173]  B. Crespi,et al.  Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers , 1994 .

[174]  C. A. Rote,et al.  Complete base sequence for the mitochondrial large subunit ribosomal RNA of the gypsy moth Lymantha dispar(L.) , 1994, Insect molecular biology.

[175]  A. Austin,et al.  Molecular phylogeny of the insect order Hymenoptera: apocritan relationships. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[176]  S. Adhya,et al.  Import of small RNAs into Leishmania mitochondria in vitro. , 1994, Nucleic acids research.

[177]  A. Graybeal Evaluating the Phylogenetic Utility of Genes: A Search for Genes Informative About Deep Divergences among Vertebrates , 1994 .

[178]  M. Yao,et al.  An rRNA variable region has an evolutionarily conserved essential role despite sequence divergence , 1994, Molecular and cellular biology.

[179]  K. Kjer,et al.  Mosquito large subunit ribosomal RNA: simultaneous alignment of primary and secondary structure. , 1994, Biochimica et biophysica acta.

[180]  K. Watanabe,et al.  Existence of nuclear‐encoded 5S‐rRNA in bovine mitochondria , 1994, FEBS letters.

[181]  R. Gutell,et al.  Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. , 1993, Nucleic acids research.

[182]  T. Crease Sequence of the intergenic spacer between the 28S and 18S rRNA-encoding genes of the crustacean, Daphnia pulex. , 1993, Gene.

[183]  G. L. Eliceiri,et al.  Three new small nucleolar RNAs that are psoralen cross-linked in vivo to unique regions of pre-rRNA , 1993, Molecular and cellular biology.

[184]  Yves Van de Peer,et al.  Compilation of small ribosomal subunit RNA structures , 1993, Nucleic Acids Res..

[185]  W. Black,et al.  A phylogeny of New World Deltocephalus-like leafhopper genera based on mitochondrial 16S ribosomal DNA sequences. , 1993, Molecular phylogenetics and evolution.

[186]  W. Brown,et al.  Rates and patterns of base change in the small subunit ribosomal RNA gene. , 1993, Genetics.

[187]  Andrew P. Martin,et al.  Body size, metabolic rate, generation time, and the molecular clock. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[188]  R. Gutell,et al.  A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. , 1992, Nucleic acids research.

[189]  R. Crozier,et al.  The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. , 1993, Genetics.

[190]  T. Eickbush,et al.  Sequence relationship of retrotransposable elements R1 and R2 within and between divergent insect species. , 1993, Molecular biology and evolution.

[191]  Carl R. Woese,et al.  4 Probing RNA Structure, Function, and History by Comparative Analysis , 1993 .

[192]  Robin Ray Gutell,et al.  Collection of small subunit (16S- and 16S-like) ribosomal RNA structures , 1993, Nucleic Acids Res..

[193]  Murray N. Schnare,et al.  A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993 , 1993, Nucleic Acids Res..

[194]  Y. Bigot,et al.  The 28S ribosomal RNA-encoding gene of Hymenoptera: inserted sequences in the retrotransposon-rich regions. , 1992, Gene.

[195]  G. Stormo,et al.  Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. , 1992, Nucleic acids research.

[196]  A. Clark,et al.  Sequencing errors and molecular evolutionary analysis. , 1992, Molecular biology and evolution.

[197]  N. Larsen,et al.  Higher order interactions in 23s rRNA. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[198]  H. Ishikawa,et al.  Unique structure in the intergenic and 5' external transcribed spacer of the ribosomal RNA gene from the pea aphid Acyrthosiphon pisum. , 1992, European journal of biochemistry.

[199]  T. Eickbush,et al.  Turnover of R1 (type I) and R2 (type II) retrotransposable elements in the ribosomal DNA of Drosophila melanogaster. , 1992, Genetics.

[200]  J. Dame,et al.  The identification and characterization of a break within the large subunit ribosomal RNA of Trichinella spiralis: comparison of gap sequences within the genus. , 1992, Molecular and biochemical parasitology.

[201]  D. States Molecular sequence accuracy: analysing imperfect data. , 1992, Trends in genetics : TIG.

[202]  J. Glaszmann,et al.  Variation of ribosomal gene spacer length among wild and cultivated banana , 1992, Heredity.

[203]  A. Fallon,et al.  Primary structure of the ribosomal DNA intergenic spacer from the mosquito, Aedes albopictus. , 1992, DNA and cell biology.

[204]  H. Ishikawa,et al.  The longest 18S ribosomal RNA ever known. Nucleotide sequence and presumed secondary structure of the 18S rRNA of the pea aphid, Acyrthosiphon pisum. , 1991, European journal of biochemistry.

[205]  D. Hillis,et al.  Ribosomal DNA: Molecular Evolution and Phylogenetic Inference , 1991, The Quarterly Review of Biology.

[206]  P. Gruendler,et al.  rDNA intergenic region from Arabidopsis thaliana. Structural analysis, intraspecific variation and functional implications. , 1991, Journal of molecular biology.

[207]  C R Woese,et al.  A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. , 1991, Systematic and applied microbiology.

[208]  T. Eickbush,et al.  Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[209]  D. Rekosh,et al.  Characterization of a 54-nucleotide gap region in the 28S rRNA gene of Schistosoma mansoni. , 1991, Molecular and biochemical parasitology.

[210]  R. Planta,et al.  The conserved GTPase center and variable region V9 from Saccharomyces cerevisiae 26S rRNA can be replaced by their equivalents from other prokaryotes or eukaryotes without detectable loss of ribosomal function. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[211]  C. Simon Molecular Systematics at the Species Boundary: Exploiting Conserved and Variable Regions of the Mitochondrial Genome of Animals via Direct Sequencing from Amplified DNA , 1991 .

[212]  J. Neefs,et al.  Compilation of small ribosomal subunit RNA sequences. , 1991, Nucleic acids research.

[213]  R. Wachter,et al.  A proposal for the secondary structure of a variable area of eukaryotic small ribosomal subunit RNA involving the existence of a pseudoknot. , 1990, Nucleic acids research.

[214]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[215]  T. Eickbush,et al.  Origin and evolution of retroelements based upon their reverse transcriptase sequences. , 1990, The EMBO journal.

[216]  R. Green,et al.  In vitro genetic analysis of the Tetrahymena self-splicing intron , 1990, Nature.

[217]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[218]  R. Gutell,et al.  A compilation of large subunit (23S-like) ribosomal RNA sequences presented in a secondary structure format. , 1990, Nucleic acids research.

[219]  T. Eickbush,et al.  Type I (R1) and type II (R2) ribosomal DNA insertions of Drosophila melanogaster are retrotransposable elements closely related to those of Bombyx mori. , 1990, Journal of molecular biology.

[220]  A. Fallon,et al.  Mosquito ribosomal RNA genes: Characterization of gene structure and evidence for changes in copy number during development , 1990 .

[221]  S. Pääbo,et al.  Evolution of mitochondrial ribosomal RNA in insects as shown by the polymerase chain reaction , 1990 .

[222]  A. Wilson,et al.  Shifting constraints on tRNA genes during mitochondrial DNA evolution in animals. , 1989, The New biologist.

[223]  R. Crozier,et al.  The CO-I and CO-II region of honeybee mitochondrial DNA: evidence for variation in insect mitochondrial evolutionary rates. , 1989, Molecular biology and evolution.

[224]  F. Collins,et al.  Microgeographic variation in rDNA intergenic spacers of Anopheles gambiae in western Kenya , 1989, Heredity.

[225]  M. Yao,et al.  Identifying functional regions of rRNA by insertion mutagenesis and complete gene replacement in Tetrahymena thermophila. , 1989, The EMBO journal.

[226]  R. Planta,et al.  A system for the analysis of yeast ribosomal DNA mutations , 1989, Molecular and cellular biology.

[227]  Y. Peer,et al.  Primary and secondary structure of the 18S ribosomal RNA of the bird spider Eurypelma californica and evolutionary relationships among eukaryotic phyla. , 1988, European journal of biochemistry.

[228]  John M. Hancock,et al.  Complete sequences of the rRNA genes of Drosophila melanogaster. , 1988, Molecular biology and evolution.

[229]  John M. Hancock,et al.  Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs. , 1988, Molecular biology and evolution.

[230]  John M. Hancock,et al.  Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster. , 1988, Molecular biology and evolution.

[231]  D. Hayward,et al.  Analysis of the Drosophila rDNA promoter by transient expression. , 1988, Nucleic acids research.

[232]  R. de Wachter,et al.  Primary and secondary structure of the 18 S ribosomal RNA of the insect species Tenebrio molitor , 1988, FEBS letters.

[233]  R. Raff,et al.  Molecular phylogeny of the animal kingdom. , 1988, Science.

[234]  R. Gutell,et al.  A compilation of large subunit RNA sequences presented in a structural format. , 1988, Nucleic acids research.

[235]  S. Guttman,et al.  Genetic variation in Neodiprion (Hymenoptera: Symphyta: Diprionidae) sawflies and a comment on low levels of genetic diversity within the Hymenoptera , 1987 .

[236]  D. Tautz,et al.  Evolutionary divergence of promoters and spacers in the rDNA family of four Drosophila species. Implications for molecular coevolution in multigene families. , 1987, Journal of molecular biology.

[237]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[238]  N. Cross,et al.  A novel arrangement of sequence elements surrounding the rDNA promoter and its spacer duplications in tsetse species. , 1987, Journal of molecular biology.

[239]  G. Gutman,et al.  Slipped-strand mispairing: a major mechanism for DNA sequence evolution. , 1987, Molecular biology and evolution.

[240]  Nucleotide sequence of the large ribosomal RNA of honeybee mitochondria. , 1987, Nucleic acids research.

[241]  H. Fujiwara,et al.  Structure of the Bombyx mori rDNA: initiation site for its transcription. , 1987, Nucleic acids research.

[242]  Nicholas C.P. Cross,et al.  Tsetse fly rDNA: an analysis of structure and sequence , 1987, Nucleic Acids Res..

[243]  F. Ayala,et al.  Correlations between development rates, enzyme activities, ribosomal DNA spacer-length phenotypes, and adaptation in Drosophila melanogaster. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[244]  Robert Johnson,et al.  Structural Analysis , 2020, Multiphysics Modeling with Application to Biomedical Engineering.

[245]  Gary J. Olsen,et al.  Ribosomal RNA phylogeny and the primary lines of evolutionary descent , 1986, Cell.

[246]  R. Gutell,et al.  Higher order structure in ribosomal RNA. , 1986, The EMBO journal.

[247]  G. Brun,et al.  The secondary structures of the Xenopus laevis and human mitochondrial small ribosomal subunit RNA are similar , 1986, FEBS letters.

[248]  A. Coulson,et al.  The rDNA of C. elegans: sequence and structure. , 1986, Nucleic acids research.

[249]  D. Tautz,et al.  Conservation and divergence in multigene families: alternatives to selection and drift. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[250]  I. Wool,et al.  Studies of the Structure of Eukaryotic (Mammalian) Ribosomes , 1986 .

[251]  A. Weiner,et al.  Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. , 1986, Annual review of biochemistry.

[252]  W. Brown,et al.  A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution, and phylogenetic implications. , 1986, Molecular biology and evolution.

[253]  D. Wolstenholme,et al.  The ribosomal RNA genes of Drosophila mitochondrial DNA. , 1985, Nucleic acids research.

[254]  S. Gerbi,et al.  rRNA proceesing: removal of only nineteen bas at the gap between 28Sα and 28Sβ rRNAs in Sciara coprophila , 1985 .

[255]  P. Rae,et al.  In vivo transcription of rDNA spacers in Drosophila. , 1985, Nucleic acids research.

[256]  A. Simeone,et al.  Nucleotide sequence of a complete ribosomal spacer of D. melanogaster. , 1985, Nucleic acids research.

[257]  D. Graur GENE DIVERSITY IN HYMENOPTERA , 1985, Evolution; international journal of organic evolution.

[258]  S. Gerbi,et al.  rRNA processing: removal of only nineteen bases at the gap between 28S alpha and 28S beta rRNAs in Sciara coprophila. , 1985, Nucleic acids research.

[259]  S. Gerbi Evolution of Ribosomal DNA , 1985 .

[260]  R. Gutell,et al.  Comparative anatomy of 16-S-like ribosomal RNA. , 1985, Progress in nucleic acid research and molecular biology.

[261]  R. Flavell,et al.  Molecular coevolution: DNA divergence and the maintenance of function , 1984, Cell.

[262]  S. Gerbi,et al.  Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications. , 1984, Nucleic acids research.

[263]  O. Miller,et al.  The rare transcripts of interrupted rRNA genes in Drosophila melanogaster are processed or degraded during synthesis. , 1984, The EMBO journal.

[264]  J. Bachellerie,et al.  Secondary structure of mouse 28S rRNA and general model for the folding of the large rRNA in eukaryotes. , 1984, Nucleic acids research.

[265]  J. Bachellerie,et al.  The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. , 1984, Nucleic acids research.

[266]  R. Gourse,et al.  Sequence analysis of 28S ribosomal DNA from the amphibian Xenopus laevis. , 1983, Nucleic acids research.

[267]  Structure and function of an AT-rich, interspersed repetitive sequence from Chironomus thummi: solenoidal DNA, 142 bp palindrome-frame and homologies with the sequence for site-specific recombination of bacterial transposons. , 1983, Nucleic acids research.

[268]  C. Zwieb,et al.  The structure of ribosomal RNA and its organization relative to ribosomal protein. , 1983, Progress in nucleic acid research and molecular biology.

[269]  E. Schmidt,et al.  Spacer size heterogeneity in ribosomal DNA of Chironomus thummi is due to a 120 bp repeat homologous to a predominantly centromeric repeated sequence. , 1982, Nucleic acids research.

[270]  J. Bachellerie,et al.  Sequence and secondary structure of mouse 28S rRNA 5'terminal domain. Organisation of the 5.8S-28S rRNA complex. , 1982, Nucleic acids research.

[271]  R. Planta,et al.  The primary and secondary structure of yeast 26S rRNA. , 1981, Nucleic acids research.

[272]  P. Stiegler,et al.  A general secondary-structure model for procaryotic and eucaryotic RNAs from the small ribosomal subunits. , 1981, European journal of biochemistry.

[273]  R. Gutell,et al.  Secondary structure model for 23S ribosomal RNA. , 1981, Nucleic acids research.

[274]  D. A. Clayton,et al.  Sequence and gene organization of mouse mitochondrial DNA , 1981, Cell.

[275]  C. Zwieb,et al.  Secondary structure comparisons between small subunit ribosomal RNA molecules from six different species. , 1981, Nucleic acids research.

[276]  D. Glover,et al.  Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in D. melanogaster , 1981, Nature.

[277]  H. Noller,et al.  Secondary structure of 16S ribosomal RNA. , 1981, Science.

[278]  R. Brimacombe,et al.  An experimentally-derived model for the secondary structure of the 16S ribosomal RNA from Escherichia coli. , 1980, Nucleic acids research.

[279]  I B Dawid,et al.  Repeated genes in eukaryotes. , 1980, Annual review of biochemistry.

[280]  R. Gutell,et al.  Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. , 1980, Nucleic acids research.

[281]  E. O. Long,et al.  Restriction analysis of spacers in ribosomal DNA of Drosophila melanogaster , 1979, Nucleic Acids Res..

[282]  H. Ishikawa Evolution of ribosomal RNA. , 1977, Comparative biochemistry and physiology. B, Comparative biochemistry.

[283]  J. Shine,et al.  Occurrence of heat-dissociable ribosomal RNA in insects: the presence of three polynucleotide chains in 26 S RNA from cultured Aedes aegypti cells. , 1973, Journal of molecular biology.

[284]  H. Ishikawa,et al.  Studies of the thermal conversion of 28 S RNA of Galleria mellonella (L.) to an 18 S product. , 1972, Journal of molecular biology.

[285]  I. Lapidus,et al.  Secondary structure of 5 S ribosomal RNA. , 1970, Journal of theoretical biology.

[286]  J. Greenberg Synthesis and properties of ribosomal RNA in Drosophila. , 1969, Journal of molecular biology.

[287]  M. Agosin,et al.  Isolation and characterization of ribonucleic acid from Musca domestica (L.). , 1968, Comparative biochemistry and physiology.

[288]  R. Ebstein,et al.  Dissociation of ribosomal ribonucleic acid from silkmoth pupae by heat and dimethylsulfoxide: Evidence for specific cleavage points☆ , 1966 .