Finite-Time Attitude Tracking of Spacecraft With Fault-Tolerant Capability

A finite-time attitude tracking control scheme is presented for rigid spacecraft subject to constant but unknown inertia and external disturbances. The controller, developed using sliding mode control technique, has great fault-tolerant capability to accommodate four types of actuator faults. Different from most of the existing works on attitude fault-tolerant control (FTC), the developed controller guarantees the desired attitude to be followed in finite time, which is critical for FTC systems. Moreover, the convergence time is an explicit parameter for designer's choice. Thus, the controller design simply meets the finite-time requirement. The attitude-tracking performance is evaluated through a numerical example.

[1]  David J. Atkinson,et al.  Fault-Tolerant Design Considerations and Control Strategies for Aerospace Drives , 2012, IEEE Transactions on Industrial Electronics.

[2]  Ju-Jang Lee,et al.  Comments on "A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators" , 1996, IEEE Trans. Autom. Control..

[3]  Youmin Zhang,et al.  Adaptive Sliding Mode Fault Tolerant Attitude Tracking Control for Flexible Spacecraft Under Actuator Saturation , 2012, IEEE Transactions on Control Systems Technology.

[4]  Yuanqing Xia,et al.  Attitude Tracking of Rigid Spacecraft With Bounded Disturbances , 2011, IEEE Transactions on Industrial Electronics.

[5]  B. Robertson,et al.  Satellite GN&C Anomaly Trends , 2003 .

[6]  Darren M. Dawson,et al.  Quaternion-Based Adaptive Attitude Tracking Controller Without Velocity Measurements , 2001 .

[7]  Yew-Wen Liang,et al.  Study of VSC Reliable Designs With Application to Spacecraft Attitude Stabilization , 2007, IEEE Transactions on Control Systems Technology.

[8]  Youdan Kim,et al.  Fault-tolerant control scheme for satellite attitude control system , 2010 .

[9]  P. S. Goel,et al.  Fault-tolerant spacecraft attitude control system , 1987 .

[10]  Hyeongcheol Lee,et al.  Fault-Tolerant Control Algorithm for a Four-Corner Closed-Loop Air Suspension System , 2011, IEEE Transactions on Industrial Electronics.

[11]  Marcel J. Sidi,et al.  Spacecraft Dynamics and Control: A Practical Engineering Approach , 1997 .

[12]  Yu-Shen Lu,et al.  Time-varying sliding-mode control for finite-time convergence , 2010 .

[13]  Han Ho Choi Sliding-Mode Output Feedback Control Design , 2008, IEEE Transactions on Industrial Electronics.

[14]  F. Yeh Sliding-mode adaptive attitude controller design for spacecrafts with thrusters , 2010 .

[15]  Charles J. Fallaha,et al.  Sliding-Mode Robot Control With Exponential Reaching Law , 2011, IEEE Transactions on Industrial Electronics.

[16]  Wenchuan Cai,et al.  Indirect Robust Adaptive Fault -Tolerant Control for Attitude Tracking of Spacecraft , 2008 .

[17]  Krishna Dev Kumar,et al.  Robust attitude stabilization of spacecraft subject to actuator failures , 2011 .

[18]  Yew-Wen Liang,et al.  T–S Model-Based SMC Reliable Design for a Class of Nonlinear Control Systems , 2009, IEEE Transactions on Industrial Electronics.

[19]  Yuanqing Xia,et al.  Design of Static Output Feedback Sliding Mode Control for Uncertain Linear Systems , 2010, IEEE Transactions on Industrial Electronics.

[20]  Yuanqing Xia,et al.  Adaptive Sliding Mode Control for Attitude Stabilization With Actuator Saturation , 2011, IEEE Transactions on Industrial Electronics.

[21]  Hebertt Sira-Ramírez,et al.  Variable-structure control of spacecraft attitude maneuvers , 1988 .

[22]  Shih-Che Lo,et al.  Smooth Sliding-Mode Control for Spacecraft Attitude Tracking Maneuvers , 1995 .

[23]  Youmin Zhang,et al.  Bibliographical review on reconfigurable fault-tolerant control systems , 2003, Annu. Rev. Control..

[24]  Xi Liu,et al.  Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[25]  Chang-Kyung Ryoo,et al.  Fault tolerant control for satellites with four reaction wheels , 2008 .

[26]  May-Win L. Thein,et al.  Quasi-Continuous Higher Order Sliding-Mode Controllers for Spacecraft-Attitude-Tracking Maneuvers , 2010, IEEE Transactions on Industrial Electronics.

[27]  R. Farrenkopf Analytic Steady-State Accuracy Solutions for Two Common Spacecraft Attitude Estimators , 1978 .

[28]  Youmin Zhang,et al.  Fault-Tolerant Attitude Control for Flexible Spacecraft Without Angular Velocity Magnitude Measurement , 2011 .

[29]  James Lee,et al.  A Fault-Tolerant Magnetic Spin Stabilizing Controller for the JC2Sat-FF Mission , 2008 .

[30]  S. Tafazoli,et al.  Nonlinear control and stability analysis of spacecraft attitude recovery , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[31]  Ashish Tewari,et al.  Optimal nonlinear tracking of spacecraft attitude maneuvers , 2004, IEEE Transactions on Control Systems Technology.

[32]  Shih-Che Lo,et al.  Sliding-Mode Controller Design for Spacecraft Attitude Tracking Maneuvers , 1993, 1993 American Control Conference.

[33]  John Y. Hung,et al.  Variable structure control: a survey , 1993, IEEE Trans. Ind. Electron..

[34]  Krishna Dev Kumar,et al.  Fault Tolerant Reconfigurable Satellite Formations Using Adaptive Variable Structure Techniques , 2010 .

[35]  Peter Xiaoping Liu,et al.  Robust Sliding Mode Control for Robot Manipulators , 2011, IEEE Transactions on Industrial Electronics.

[36]  Abdelhamid Tayebi,et al.  Unit Quaternion-Based Output Feedback for the Attitude Tracking Problem , 2008, IEEE Transactions on Automatic Control.

[37]  Hong Wang,et al.  Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[38]  Yuanqing Xia,et al.  Attitude stabilization of rigid spacecraft with finite‐time convergence , 2011 .