Existence of mild solutions for stochastic differential equations and semilinear equations with non-Gaussian Lévy noise

Existence and uniqueness of the mild solutions for stochastic differential equations for Hilbert valued stochastic processes are discussed, with the multiplicative noise term given by an integral with respect to a general compensated Poisson random measure. Parts of the results allow for coefficients which can depend on the entire past path of the solution process. In the Markov case Yosida approximations are also discussed, as well as continuous dependence on initial data, and coefficients. The case of coefficients that besides the dependence on the solution process have also an additional random dependence is also included in our treatment. All results are proven for processes with values in separable Hilbert spaces. Differentiable dependence on the initial condition is proven by adapting a method of S. Cerrai.

[1]  I. I. Gikhman,et al.  The Theory of Stochastic Processes II , 1975 .

[2]  Zdzisław Brzeźniak,et al.  Stochastic partial differential equations in M-type 2 Banach spaces , 1995 .

[3]  Jerzy Zabczyk,et al.  Stochastic Partial Differential Equations with Lévy Noise: References , 2007 .

[4]  R. Durrett,et al.  Asymptotic behavior of Brownian polymers , 1992 .

[5]  I. I. Gikhman,et al.  The Theory of Stochastic Processes III , 1979 .

[6]  C. Knoche Mild solutions of SPDE's driven by Poisson noise in infinite dimensions and their dependence on initial conditions , 2005 .

[7]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[8]  Werner Linde,et al.  Infinitely divisible and stable measures on Banach spaces , 1983 .

[9]  Stewart N. Ethier,et al.  Generators and Markov Processes , 2008 .

[10]  H. Bauer Wahrscheinlichkeitstheorie und Grundzuge der Maßtheorie , 1968 .

[11]  Michel Métivier,et al.  Semimartingales: A course on stochastic processes , 1986 .

[12]  V. Mandrekar,et al.  Existence and uniqueness of path wise solutions for stochastic integral equations driven by Lévy noise on separable Banach spaces , 2006 .

[13]  Akira Ichikawa,et al.  Some inequalities for martingales and stochastic convolutions , 1986 .

[14]  S. Albeverio,et al.  Parabolic SPDEs driven by Poisson white noise , 1998 .

[15]  S. Albeverio,et al.  Stochastic Integrals and the Lévy–Ito Decomposition Theorem on Separable Banach Spaces , 2005 .

[16]  A Bayes Formula for Nonlinear Filtering with Gaussian and Cox Noise , 2011 .

[17]  Maurizio Pratelli,et al.  Intégration stochastique et géométrie des espaces de Banach , 1988 .

[18]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[19]  P. Kotelenez A maximal inequality for stochastic convolution integrals on hilbert spaces and space-time regularity of linear stochastic partial differential equations , 1987 .

[20]  S. Cerrai Second Order Pde's in Finite and Infinite Dimension: A Probabilistic Approach , 2001 .

[21]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[22]  B. Rüdiger Stochastic integration with respect to compensated Poisson random measures on separable Banach spaces , 2004 .

[23]  Michel Metivier,et al.  STOCHASTIC INTEGRAL EQUATIONS , 1980 .

[24]  Claudia Prévôt,et al.  EXISTENCE, UNIQUENESS AND REGULARITY w.r.t. THE INITIAL CONDITION OF MILD SOLUTIONS OF SPDEs DRIVEN BY POISSON NOISE , 2010 .

[25]  P. Buttà,et al.  Front Fluctuations in One Dimensional Stochastic Phase Field Equations , 2002 .

[26]  J. Wloka,et al.  Die Grundlagen der Theorie der Markoffschen Prozesse , 1961 .

[27]  H. Halberstam,et al.  North-Holland Mathematical Library , 2005 .

[28]  Z. Brzeźniak On stochastic convolution in banach spaces and applications , 1997 .

[29]  V. Mandrekar,et al.  Existence of weak solutions for stochastic differential equations and martingale solutions for stochastic semilinear equations , 1999 .

[30]  V. Mandrekar,et al.  Lévy-Khinchine representation and Banach spaces of type and cotype , 1980 .

[31]  E. Dettweiler Banach space valued processes with independent increments and stochastic integration , 1983 .

[32]  Carlo Marinelli LOCAL WELL‐POSEDNESS OF MUSIELA’S SPDE WITH LÉVY NOISE , 2010 .

[33]  A. Skorokhod,et al.  Studies in the theory of random processes , 1966 .

[34]  P. Protter Stochastic integration and differential equations , 1990 .

[35]  Giuseppe Da Prato,et al.  Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .

[36]  Self attracting diffusions: Two case studies , 1995 .

[37]  G. Pisier Martingales with values in uniformly convex spaces , 1975 .

[38]  Claudia Knoche,et al.  SPDEs in infinite dimension with Poisson noise , 2004 .

[39]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[40]  Jia-An Yan,et al.  Introduction to Infinite Dimensional Stochastic Analysis , 2001 .

[41]  Jerzy Zabczyk,et al.  Ergodicity for Infinite Dimensional Systems: Appendices , 1996 .

[42]  S. Yau Mathematics and its applications , 2002 .

[43]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[44]  Damir Filipovic,et al.  Existence of Lévy term structure models , 2007, Finance Stochastics.

[45]  G. Pisier Probabilistic methods in the geometry of Banach spaces , 1986 .

[46]  A. Bensoussan,et al.  Contrôle impulsionnel et inéquations quasi variationnelles , 1982 .

[47]  D. Aldous The Central Limit Theorem for Real and Banach Valued Random Variables , 1981 .

[48]  E. Hausenblas Existence, Uniqueness and Regularity of Parabolic SPDEs Driven by Poisson Random Measure , 2005 .

[49]  S. Albeverio,et al.  Infinite-dimensional stochastic differential equations obtained by subordination and related Dirichlet forms , 2003 .

[50]  G. Kallianpur,et al.  Stochastic Differential Equations in Infinite Dimensional Spaces , 1995 .