Inverse Relations and Schauder Bases

The concept of inter-changes of Schauder bases is used to interpret inverse relations for sequences. For a given power series, the interplay between different representations by Schauder bases can result in combinatorial identities, new or known. Local cohomology residues and local duality are used for computations. The viewpoint of Riordan arrays is examined using Schauder bases.

[1]  I-Chiau Huang Pseudofunctors on Modules With Zero Dimensional Support , 1995 .

[2]  I-Chiau Huang Reversion of power series by residues , 1998 .

[3]  L. Carlitz,et al.  Some inverse relations , 1973 .

[4]  G. Egorychev Integral representation and the computation of combinatorial sums , 1984 .

[5]  The $\bal$\ and $\bcl$\ Bailey Transform and Lemma , 1992, math/9204236.

[6]  Gaurav Bhatnagar,et al.  Generalized Bibasic Hypergeometric Series and TheirU(n) Extensions , 1997 .

[7]  Erich Neuwirth Recursively defined combinatorial functions: extending Galton's board , 2001, Discret. Math..

[8]  H. W. Gould,et al.  Some new inverse series relations , 1973 .

[9]  Michael J. Schlosser,et al.  A new multidimensional matrix inverse with applications to multiple q-series , 1999, Discret. Math..

[10]  Stephen C. Milne,et al.  Balanced3ϕ2Summation Theorems forU(n) Basic Hypergeometric Series , 1997 .

[11]  Gaurav Bhatnagar,et al.  A characterization of inverse relations , 1998, Discret. Math..

[12]  I-Chiau Huang Applications of residues to combinatorial identities , 1997 .

[13]  David M. Bressoud,et al.  Some identities for terminating q-series , 1981, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  Steven Roman The Umbral Calculus , 1984 .

[15]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[16]  Miles Reid,et al.  Commutative Ring Theory , 1989 .

[17]  C. Krattenthaler Operator methods and Lagrange inversion: a unified approach to Lagrange formulas , 1988 .

[18]  Christian Krattenthaler,et al.  A new matrix inverse , 1996 .

[19]  Renzo Sprugnoli,et al.  Riordan arrays and the Abel-Gould identity , 1995, Discret. Math..

[20]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[21]  Bernoulli Numbers and Polynomials via Residues , 1999 .

[22]  Zhuzhoma Evgeny Victorovich,et al.  Translation of Mathematical Monographs , 1996 .