SYMMETRIC AND PROBABILISTIC MULTIPARTY REMOTE STATE PREPARATION VIA THE POSITIVE-OPERATOR-VALUED MEASURE

We present a tripartite scheme for a preparer to remotely prepare an arbitrary single-qubit state in either distant ministrant's place by using a GHZ-type state. After the preparer's single-qubit state projective measurement, by performing a proper positive operator-valued measure, one ministrant can construct the preparer's state in a probabilistic manner with the other ministrant's assistance. Furthermore, we show that the remote state preparation can be achieved with a higher probability provided that the prepared state belongs to two special ensembles. Finally, we sketch the generalization of the tripartite scheme to a multiparty case.

[1]  Achievable efficiencies for probabilistically cloning the states , 2003, quant-ph/0307186.

[2]  Yu-zhu Wang,et al.  Remote preparation of a two-particle entangled state , 2003 .

[3]  A. Acín Statistical distinguishability between unitary operations. , 2001, Physical review letters.

[4]  S. A. Babichev,et al.  Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. , 2003, Physical review letters.

[5]  A. Hayashi,et al.  Remote state preparation without oblivious conditions , 2002, quant-ph/0205009.

[6]  G. Guo,et al.  Remote preparation of mixed states via noisy entanglement (6 pages) , 2005, quant-ph/0503088.

[7]  Zhanjun Zhang,et al.  Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing , 2008 .

[8]  Shi Shou-Hua,et al.  Probabilistic Teleportation of an Arbitrary Unknown Two-Qubit State via Positive Operator-Valued Measure and Two Non-maximally Entangled States , 2006 .

[9]  Debbie W. Leung,et al.  Remote preparation of quantum states , 2005, IEEE Transactions on Information Theory.

[10]  K. Audenaert,et al.  Entanglement cost under positive-partial-transpose-preserving operations. , 2003, Physical review letters.

[11]  Zhan-jun Zhang,et al.  Multiparty quantum secret sharing , 2004, quant-ph/0412203.

[12]  Zhi-Xi Wang,et al.  Deterministic secure direct communication using GHZ states and swapping quantum entanglement , 2004, quant-ph/0406082.

[13]  He-Shan Song,et al.  Remote preparation of a qudit using maximally entangled states of qubits , 2006, quant-ph/0603036.

[14]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[15]  Dong Wang,et al.  Generalized quantum state sharing of arbitrary unknown two-qubit state , 2007 .

[16]  Zhang-yin Wang,et al.  Scheme for cloning an unknown single qutrit state with assistance , 2007 .

[17]  Yan Feng-li,et al.  Probabilistic Teleportation of an Unknown Two-Particle State with a Four-Particle Pure Entangled State and Positive Operator Valued Measure , 2006 .

[18]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[19]  Fuguo Deng,et al.  Circular quantum secret sharing , 2006, quant-ph/0612018.

[20]  Chui-Ping Yang,et al.  Efficient many-party controlled teleportation of multiqubit quantum information via entanglement , 2004, quant-ph/0402138.

[21]  B. Zeng,et al.  Remote-state preparation in higher dimension and the parallelizable manifold Sn-1 , 2001, quant-ph/0105088.

[22]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[23]  Fuguo Deng,et al.  Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement , 2005, quant-ph/0501129.

[24]  A. Pati Minimum classical bit for remote preparation and measurement of a qubit , 1999, quant-ph/9907022.

[25]  B. Shi,et al.  Remote state preparation of an entangled state , 2002 .

[26]  Mingsheng Zhan,et al.  Multi-output programmable quantum processor , 2002 .

[27]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[28]  Jiahua Li,et al.  Efficient scheme for multipartite entanglement and quantum information processing with trapped ions , 2005 .

[29]  Ting Gao,et al.  Addendum to "Quantum secret sharing between multiparty and multiparty without entanglement" , 2005 .

[30]  C. Helstrom Quantum detection and estimation theory , 1969 .

[31]  Chi-Yee Cheung,et al.  Minimal classical communication and measurement complexity for quantum information splitting , 2008, 0812.4214.

[32]  Z. Man,et al.  Multiparty quantum secret sharing of classical messages based on entanglement swapping , 2004, quant-ph/0406103.

[33]  K. Gao,et al.  Experimental implementation of remote state preparation by nuclear magnetic resonance , 2002, quant-ph/0202004.

[34]  Yan Xia,et al.  Multiparty remote state preparation , 2007 .

[35]  H. Lo Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity , 1999, quant-ph/9912009.

[36]  E. al.,et al.  Simple scheme for implementing the Deutsch–Jozsa algorithm in a thermal cavity , 2006, quant-ph/0611225.

[37]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[38]  M. Goggin,et al.  Remote state preparation: arbitrary remote control of photon polarization. , 2005, Physical review letters.

[39]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[40]  D. Berry Resources required for exact remote state preparation , 2004, quant-ph/0404004.

[41]  Ping Zhou,et al.  Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements , 2006 .

[42]  G. Guo,et al.  Faithful remote state preparation using finite classical bits and a nonmaximally entangled state , 2003, quant-ph/0307027.

[43]  Yong-Jian Gu,et al.  Deterministic exact teleportation via two partially entangled pairs of particles , 2006 .

[44]  Jie Song,et al.  Remote preparation of the N-particle GHZ state using quantum statistics , 2007 .

[45]  Dong Wang,et al.  Remote preparation of a class of three-qubit states , 2008 .

[46]  Yi-min Liu,et al.  Many-Agent Controlled Teleportation of Multi-qubit Quantum Information via Quantum Entanglement Swapping , 2004, quant-ph/0411088.

[47]  Zhan-jun Zhang Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message , 2006 .

[48]  Z.-J. Zhang,et al.  Three-party qutrit-state sharing , 2007 .

[49]  Z. Kurucz,et al.  General criterion for oblivious remote state preparation , 2006 .

[50]  Hong-Yi Dai,et al.  Classical communication cost and remote preparation of the four-particle GHZ class state , 2006 .

[51]  Mingsheng Zhan,et al.  Remote information concentration by a Greenberger-Horne-Zeilinger state and by a bound entangled state , 2003 .

[52]  Z. Man,et al.  Multiparty secret sharing of quantum information using and identifying Bell states , 2005 .