Personalized Privacy-Preserving Publication of Trajectory Data by Generalization and Distortion of Moving Points

[1]  Adam Meyerson,et al.  On the complexity of optimal K-anonymity , 2004, PODS.

[2]  Yu Zheng,et al.  Trajectory Data Mining , 2015, ACM Trans. Intell. Syst. Technol..

[3]  Dimitris Sacharidis,et al.  K-anonymity in the Presence of External Databases , 2022 .

[4]  ASHWIN MACHANAVAJJHALA,et al.  L-diversity: privacy beyond k-anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[5]  Dechang Pi,et al.  Differential privacy trajectory data protection scheme based on R-tree , 2021, Expert Syst. Appl..

[6]  Ling Liu,et al.  Utility-Aware Synthesis of Differentially Private and Attack-Resilient Location Traces , 2018, CCS.

[7]  Francesco Bonchi,et al.  Anonymization of moving objects databases by clustering and perturbation , 2010, Inf. Syst..

[8]  Hairong Qi,et al.  Personalized Privacy-Preserving Task Allocation for Mobile Crowdsensing , 2019, IEEE Transactions on Mobile Computing.

[9]  Sabrina De Capitani di Vimercati,et al.  An Obfuscation-Based Approach for Protecting Location Privacy , 2011, IEEE Transactions on Dependable and Secure Computing.

[10]  M. Abdul Rahiman,et al.  Hybrid Approach to Speed-Up the Privacy Preserving Kernel K-means Clustering and its Application in Social Distributed Environment , 2020, Journal of Network and Systems Management.

[11]  Mohamed Faten Zhani,et al.  Network Management 2030: Operations and Control of Network 2030 Services , 2020, Journal of Network and Systems Management.

[12]  Tianqing Zhu,et al.  LOPO: a location privacy preserving path optimization scheme for spatial crowdsourcing , 2021 .

[13]  Zongda Wu,et al.  Constructing dummy query sequences to protect location privacy and query privacy in location-based services , 2020, World Wide Web.

[14]  Hussein Mouftah,et al.  Securing Critical IoT Infrastructures With Blockchain-Supported Federated Learning , 2021, IEEE Internet of Things Journal.

[15]  Jeff Magee,et al.  Security Considerations for a Distributed Location Service , 1998, Journal of Network and Systems Management.

[16]  Anuj Karpatne,et al.  Spatio-Temporal Data Mining , 2017, ACM Comput. Surv..

[17]  Mahdi Abadi,et al.  PDP-SAG: Personalized Privacy Protection in Moving Objects Databases by Combining Differential Privacy and Sensitive Attribute Generalization , 2019, IEEE Access.

[18]  Mahdi Abadi,et al.  PLDP-TD: Personalized-location differentially private data analysis on trajectory databases , 2018, Pervasive Mob. Comput..

[19]  Laks V. S. Lakshmanan,et al.  Anonymizing moving objects: how to hide a MOB in a crowd? , 2009, EDBT '09.

[20]  Mahdi Abadi,et al.  A differentially private location generalization approach to guarantee non-uniform privacy in moving objects databases , 2021, Knowl. Based Syst..

[21]  Benjamin C. M. Fung,et al.  Privacy-preserving trajectory data publishing by local suppression , 2013, Inf. Sci..

[22]  Pierangela Samarati,et al.  Generalizing Data to Provide Anonymity when Disclosing Information , 1998, PODS 1998.

[23]  Nikos Mamoulis,et al.  Local Suppression and Splitting Techniques for Privacy Preserving Publication of Trajectories , 2017, IEEE Transactions on Knowledge and Data Engineering.

[24]  Yan Huang,et al.  Search locations safely and accurately: A location privacy protection algorithm with accurate service , 2018, J. Netw. Comput. Appl..

[25]  Marco Gruteser,et al.  USENIX Association , 1992 .

[26]  Pierangela Samarati,et al.  Protecting Respondents' Identities in Microdata Release , 2001, IEEE Trans. Knowl. Data Eng..

[27]  Gautam Srivastava,et al.  Privacy-Preserving Multiobjective Sanitization Model in 6G IoT Environments , 2021, IEEE Internet of Things Journal.

[28]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[29]  Wei Jiang,et al.  Traffic Information Publication with Privacy Preservation , 2014, TIST.

[30]  Tanzima Hashem,et al.  "Don't trust anyone": Privacy protection for location-based services , 2011, Pervasive Mob. Comput..

[31]  Thomas Brinkhoff,et al.  A Framework for Generating Network-Based Moving Objects , 2002, GeoInformatica.

[32]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[33]  Mahdi Abadi,et al.  PPTD: Preserving personalized privacy in trajectory data publishing by sensitive attribute generalization and trajectory local suppression , 2016, Knowl. Based Syst..

[34]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[35]  Josep Domingo-Ferrer,et al.  Microaggregation- and permutation-based anonymization of movement data , 2012, Inf. Sci..

[36]  Zhiqiang Xie,et al.  The privacy preserving method for dynamic trajectory releasing based on adaptive clustering , 2017, Inf. Sci..

[37]  Mahdi Abadi,et al.  Enhancing spatial and temporal utilities in differentially private moving objects database release , 2020, International Journal of Information Security.

[38]  Minyi Guo,et al.  Long-term location privacy protection for location-based services in mobile cloud computing , 2016, Soft Comput..

[39]  Sushil Jajodia,et al.  Protecting Privacy Against Location-Based Personal Identification , 2005, Secure Data Management.

[40]  Mohsen Kahani,et al.  A Clustering-Based Approach for Personalized Privacy Preserving Publication of Moving Object Trajectory Data , 2012, NSS.