Fecal microbiota profile in a group of myasthenia gravis patients

[1]  M. Gueimonde,et al.  Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain regional deficits , 2019, PloS one.

[2]  S. Pan,et al.  Dysbiosis of the intestinal microbiota in neurocritically ill patients and the risk for death , 2019, Critical Care.

[3]  R. Mantegazza,et al.  Gut microbiota and probiotics: novel immune system modulators in myasthenia gravis? , 2018, Annals of the New York Academy of Sciences.

[4]  Amnon Amir,et al.  Gut Microbiota Offers Universal Biomarkers across Ethnicity in Inflammatory Bowel Disease Diagnosis and Infliximab Response Prediction , 2018, mSystems.

[5]  W. D. de Vos,et al.  Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study , 2017, PloS one.

[6]  M. Ventura,et al.  Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates , 2017, Microbiome.

[7]  J. Tap,et al.  Faecal microbiota study reveals specific dysbiosis in spondyloarthritis , 2017, Annals of the rheumatic diseases.

[8]  T. Dinan,et al.  The Role of the Gastrointestinal Microbiota in Visceral Pain. , 2017, Handbook of experimental pharmacology.

[9]  Huajun Zheng,et al.  Altered Gut Microbiota Composition Associated with Eczema in Infants , 2016, PloS one.

[10]  Laura M Cox,et al.  Alterations of the human gut microbiome in multiple sclerosis , 2016, Nature Communications.

[11]  Krishna R. Kalari,et al.  Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls , 2016, Scientific Reports.

[12]  Jing-Long Huang,et al.  Alterations in the gut microbiotas of children with food sensitization in early life , 2016, Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology.

[13]  N. Gilhus,et al.  Myasthenia gravis — autoantibody characteristics and their implications for therapy , 2016, Nature Reviews Neurology.

[14]  M. Ventura,et al.  Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study , 2016, International journal of molecular sciences.

[15]  E. Matteson,et al.  An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis , 2016, Genome Medicine.

[16]  Ron Milo,et al.  Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans , 2016, Cell.

[17]  D. Ramón,et al.  Selection of potential probiotic bifidobacteria and prebiotics for elderly by using in vitro faecal batch cultures , 2016, European Food Research and Technology.

[18]  Nils Erik Gilhus,et al.  Myasthenia gravis: subgroup classification and therapeutic strategies , 2015, The Lancet Neurology.

[19]  Ted M Burns,et al.  Myasthenia Gravis , 2015, Seminars in Neurology.

[20]  Justine W. Debelius,et al.  Microbial endocrinology: the interplay between the microbiota and the endocrine system. , 2015, FEMS microbiology reviews.

[21]  M. Ventura,et al.  Intestinal microbiota development in preterm neonates and effect of perinatal antibiotics. , 2015, The Journal of pediatrics.

[22]  T. Dinan,et al.  Microbiota regulation of the Mammalian gut-brain axis. , 2015, Advances in applied microbiology.

[23]  N. Segata,et al.  Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. , 2014, FEMS microbiology ecology.

[24]  F. Turroni,et al.  Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus , 2014, mBio.

[25]  T. Dinan,et al.  Priming for health: gut microbiota acquired in early life regulates physiology, brain and behaviour , 2014, Acta paediatrica.

[26]  Á. M. Patterson,et al.  Microbial Targets for the Development of Functional Foods Accordingly with Nutritional and Immune Parameters Altered in the Elderly , 2013, Journal of the American College of Nutrition.

[27]  F. Turroni,et al.  Assessing the Fecal Microbiota: An Optimized Ion Torrent 16S rRNA Gene-Based Analysis Protocol , 2013, PloS one.

[28]  F. Bäckhed,et al.  The gut microbiota — masters of host development and physiology , 2013, Nature Reviews Microbiology.

[29]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[30]  M. Surette,et al.  The interplay between the intestinal microbiota and the brain , 2012, Nature Reviews Microbiology.

[31]  D. Sinderen,et al.  Gut microbiota composition correlates with diet and health in the elderly , 2012, Nature.

[32]  A. Margolles,et al.  Establishment and development of intestinal microbiota in preterm neonates. , 2012, FEMS microbiology ecology.

[33]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[34]  J. Foster,et al.  Reduced anxiety‐like behavior and central neurochemical change in germ‐free mice , 2011, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[35]  H. Forssberg,et al.  Normal gut microbiota modulates brain development and behavior , 2011, Proceedings of the National Academy of Sciences.

[36]  Robert C. Edgar,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2001 .

[37]  B. Finlay,et al.  Gut microbiota in health and disease. , 2010, Physiological reviews.

[38]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[39]  M. Teixeira,et al.  Commensal microbiota is fundamental for the development of inflammatory pain , 2008, Proceedings of the National Academy of Sciences.

[40]  M. Schemann Control of gastrointestinal motility by the "gut brain"--the enteric nervous system. , 2005, Journal of pediatric gastroenterology and nutrition.

[41]  E. Koonin,et al.  Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? , 2004, Trends in genetics : TIG.

[42]  Y. Chida,et al.  Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice , 2004, The Journal of physiology.

[43]  J Lederberg,et al.  Infectious History , 2000, Science.