Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.

Otoacoustic emissions (OAEs) of all types are widely assumed to arise by a common mechanism: nonlinear electromechanical distortion within the cochlea. In this view, both stimulus-frequency (SFOAEs) and distortion-product emissions (DPOAEs) arise because nonlinearities in the mechanics act as "sources" of backward-traveling waves. This unified picture is tested by analyzing measurements of emission phase using a simple phenomenological description of the nonlinear re-emission process. The analysis framework is independent of the detailed form of the emission sources and the nonlinearities that produce them. The analysis demonstrates that the common assumption that SFOAEs originate by nonlinear distortion requires that SFOAE phase be essentially independent of frequency, in striking contradiction with experiment. This contradiction implies that evoked otoacoustic emissions arise by two fundamentally different mechanisms within the cochlea. These two mechanisms (linear reflection versus nonlinear distortion) are described and two broad classes of emissions--reflection-source and distortion-source emissions--are distinguished based on the mechanisms of their generation. The implications of this OAE taxonomy for the measurement, interpretation, and clinical use of otoacoustic emissions as noninvasive probes of cochlear function are discussed.

[1]  G. Zweig Basilar membrane motion. , 1976, Cold Spring Harbor symposia on quantitative biology.

[2]  Low-noise chambers for auditory research. , 1975, The Journal of the Acoustical Society of America.

[3]  Edwin W Rubel,et al.  Variation of distortion product otoacoustic emissions with furosemide injection , 1994, Hearing Research.

[4]  David T. Kemp,et al.  Suppressibility of the 2 f 1- f 2 stimulated acoustic emissions in gerbil and man , 1984, Hearing Research.

[5]  A. M. Brown,et al.  The behavior of the acoustic distortion product, 2f1-f2, from the human ear and its relation to auditory sensitivity. , 1990, The Journal of the Acoustical Society of America.

[6]  G. Long The microstructure of quiet and masked thresholds , 1984, Hearing Research.

[7]  M. Sondhi,et al.  Method for computing motion in a two-dimensional cochlear model. , 1978, The Journal of the Acoustical Society of America.

[8]  D. T. Kemp,et al.  Otoacoustic emissions, travelling waves and cochlear mechanisms , 1986, Hearing Research.

[9]  D. D. Greenwood A cochlear frequency-position function for several species--29 years later. , 1990, The Journal of the Acoustical Society of America.

[10]  B L Lonsbury-Martin,et al.  Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit. II: Differential physiological vulnerability. , 1992, The Journal of the Acoustical Society of America.

[11]  B L Lonsbury-Martin,et al.  Visualization of the onset of distortion-product otoacoustic emissions, and measurement of their latency. , 1996, The Journal of the Acoustical Society of America.

[12]  Cochlear nonlinearities inferred from two-tone distortion products in the ear canal of the alligator lizard , 1984, Hearing Research.

[13]  Robert Patuzzi,et al.  Cochlear Micromechanics and Macromechanics , 1996 .

[14]  M. Liberman,et al.  Auditory-nerve response from cats raised in a low-noise chamber. , 1978, The Journal of the Acoustical Society of America.

[15]  Electrically evoked otoacoustic emissions from the apical turns of the gerbil cochlea. , 1994, The Journal of the Acoustical Society of America.

[16]  Christopher A. Shera Listening to the ear , 1992 .

[17]  E. Zwicker Delayed evoked oto-acoustic emissions and their suppression by Gaussian-shaped pressure impulses , 1983, Hearing Research.

[18]  L. Kanis,et al.  Frequency dependence of acoustic distortion products in a locally active model of the cochlea. , 1997, The Journal of the Acoustical Society of America.

[19]  Edwin W. Rubel,et al.  ACTIVE AND PASSIVE ADP COMPONENTS IN MAMMALIAN AND AVIAN EARS , 1990 .

[20]  E. de Boer Wave Reflection in Passive and Active Cochlea Models , 1983 .

[21]  Glen K. Martin,et al.  Otoacoustic Emissions: Animal Models and Clinical Observations , 1996 .

[22]  G. Zweig,et al.  Noninvasive measurement of the cochlear traveling-wave ratio. , 1993, The Journal of the Acoustical Society of America.

[23]  Graeme K. Yates,et al.  Reply to “Comment on ‘Enhancement of the transient-evoked otoacoustic emission produced by the addition of a pure tone in the guinea pig’ ” [J. Acoust. Soc. Am. 105, 919–921 (1999)] , 1999 .

[24]  W. S. Rhode Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.

[25]  R Probst,et al.  A review of otoacoustic emissions. , 1991, The Journal of the Acoustical Society of America.

[26]  G. Long,et al.  Modeling otoacoustic emission and hearing threshold fine structures. , 1998, The Journal of the Acoustical Society of America.

[27]  van Hengel,et al.  Emissions from cochlear modelling , 1996 .

[28]  G. K. Martin,et al.  Spontaneous otoacoustic emissions in the nonhuman primate: A survey , 1985, Hearing Research.

[29]  D T Kemp,et al.  Otoacoustic emissions. , 1995, International journal of pediatric otorhinolaryngology.

[30]  Hans-Ulrich Schnitzler,et al.  Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1−f2 removes DP-gram fine structure—Evidence for a secondary generator , 1998 .

[31]  J. Guinan Changes in Stimulus Frequency Otoacoustic Emissions Produced by Two-Tone Suppression and Efferent Stimulation in Cats , 1990 .

[32]  D. Kemp,et al.  Distortion product otoacoustic emission delay measurement in human ears. , 1995, The Journal of the Acoustical Society of America.

[33]  G. K. Martin,et al.  Spontaneous otoacoustic emissions in a nonhuman primate. II. Cochlear anatomy , 1988, Hearing Research.

[34]  G Zweig,et al.  Reflection of retrograde waves within the cochlea and at the stapes. , 1991, The Journal of the Acoustical Society of America.

[35]  A. M. Brown,et al.  Two sources of acoustic distortion products from the human cochlea. , 1996, The Journal of the Acoustical Society of America.

[36]  D. Kemp,et al.  Suppression of stimulus frequency otoacoustic emissions. , 1993, The Journal of the Acoustical Society of America.

[37]  Dt Kemp,et al.  Otoacoustic Emissions in Perspective , 1997 .

[38]  S J Norton,et al.  Tone-burst-evoked otoacoustic emissions from normal-hearing subjects. , 1987, The Journal of the Acoustical Society of America.

[39]  D. T. Kemp,et al.  An Integrated View of Cochlear Mechanical Nonlinearities Observable from the Ear Canal , 1983 .

[40]  M. Liberman The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. , 1982, The Journal of the Acoustical Society of America.

[41]  Kemp Dt,et al.  The evoked cochlear mechanical response and the auditory microstructure - evidence for a new element in cochlear mechanics. , 1979 .

[42]  S Dhar,et al.  Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions. , 1999, The Journal of the Acoustical Society of America.

[43]  D T Kemp The evoked cochlear mechanical response and the auditory microstructure - evidence for a new element in cochlear mechanics. , 1979, Scandinavian audiology. Supplementum.

[44]  R. Golka Laboratory-produced ball lightning , 1994 .

[45]  D. T. Kemp,et al.  Towards a model for the origin of cochlear echoes , 1980, Hearing Research.

[46]  R. J. Ritsma,et al.  Stimulated acoustic emissions from the human ear , 1979 .

[47]  G. Bredberg,et al.  Cellular pattern and nerve supply of the human organ of Corti. , 1968, Acta oto-laryngologica.

[48]  G. K. Martin,et al.  Spontaneous otoacoustic emissions in a nonhuman primate. I. Basic features and relations to other emissions , 1988, Hearing Research.

[49]  G K Yates,et al.  Enhancement of the transient-evoked otoacoustic emission produced by the addition of a pure tone in the guinea pig. , 1998, The Journal of the Acoustical Society of America.

[50]  D T Kemp,et al.  Acoustic emission cochleography--practical aspects. , 1986, Scandinavian audiology. Supplementum.

[51]  D. Kemp,et al.  The effect of noise exposure on the details of distortion product otoacoustic emissions in humans. , 1996, The Journal of the Acoustical Society of America.

[52]  C. Shera,et al.  Analyzing reverse middle-ear transmission: noninvasive Gedankenexperiments. , 1992, The Journal of the Acoustical Society of America.

[53]  M. Kössl,et al.  Cochlear Structure and Function in Bats , 1995 .

[54]  G. Zweig,et al.  The origin of periodicity in the spectrum of evoked otoacoustic emissions. , 1995, The Journal of the Acoustical Society of America.

[55]  P M Zurek Acoustic emissions from the ear: a summary of results from humans and animals. , 1985, The Journal of the Acoustical Society of America.

[56]  T. Janssen,et al.  Suppression tuning characteristics of the 2 f1-f2 distortion-product otoacoustic emission in humans. , 1995, The Journal of the Acoustical Society of America.

[57]  E. D. Boer,et al.  Auditory physics. Physical principles in hearing theory. III , 1984 .

[58]  Jont B. Allen,et al.  Acoustics 1992: Otoacoustic emissions , 1993 .

[59]  B L Lonsbury-Martin,et al.  Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit: I. Differential dependence on stimulus parameters. , 1992, The Journal of the Acoustical Society of America.

[60]  A. Wright,et al.  Dimensions of the cochlear stereocilia in man and the guinea pig , 1984, Hearing Research.

[61]  Jont B. Allen,et al.  Micromechanical Models of the Cochlea , 1992 .

[62]  L. Brillouin,et al.  Wave Propagation in Periodic Structures , 1946 .

[63]  N. Kiang,et al.  Tails of tuning curves of auditory-nerve fibers. , 1973, The Journal of the Acoustical Society of America.

[64]  D. Kemp,et al.  A Comparison of Mechanical Nonlinearities in the Cochleae of Man and Gerbil from Ear Canal Measurements , 1938 .

[65]  M. F. Cohen Detection threshold microstructure and its effect on temporal integration data. , 1982, The Journal of the Acoustical Society of America.

[66]  M. Whitehead,et al.  Species differences of distortion-product otoacoustic emissions: comment on "Interpretation of distortion product otoacoustic emission measurements. I. Two stimulus tones" [J. Acoust. Soc. Am. 102, 413-429 (1997)]. , 1998, The Journal of the Acoustical Society of America.

[67]  D. Kemp,et al.  Time-domain observation of otoacoustic emissions during constant tone stimulation. , 1991, The Journal of the Acoustical Society of America.

[68]  D. Kemp Stimulated acoustic emissions from within the human auditory system. , 1978, The Journal of the Acoustical Society of America.

[69]  D. O. Kim Cochlear mechanics: Implications of electrophysiological and acoustical observations , 1980, Hearing Research.

[70]  Hans Werner Strube,et al.  Evoked otoacoustic emissions as cochlear Bragg reflections , 1989, Hearing Research.

[71]  D H Keefe,et al.  Double-evoked otoacoustic emissions. II. Intermittent noise rejection, calibration and ear-canal measurements. , 1998, The Journal of the Acoustical Society of America.

[72]  E Zwicker,et al.  Interrelation of different oto-acoustic emissions. , 1984, The Journal of the Acoustical Society of America.

[73]  M. Souter Stimulus frequency otoacoustic emissions from guinea pig and human subjects , 1995, Hearing Research.

[74]  Anthony W. Gummer,et al.  Basilar membrane motion in the pigeon measured with the Mössbauer technique , 1987, Hearing Research.

[75]  D McFadden,et al.  Partial dissociation of spontaneous otoacoustic emissions and distortion products during aspirin use in humans. , 1988, The Journal of the Acoustical Society of America.

[76]  J. Allen,et al.  Measurement of distortion product phase in the ear canal of the cat. , 1997, The Journal of the Acoustical Society of America.

[77]  D. Kemp,et al.  Observations on Simultaneous SFOAE and DPOAE Generation and Suppression , 1990 .

[78]  J. P. Wilson,et al.  Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus , 1980, Hearing Research.

[79]  N. Kiang Processing of speech by the auditory nervous system. , 1980, The Journal of the Acoustical Society of America.

[80]  D. T. Kemp,et al.  Observations on the Generator Mechanism of Stimulus Frequency Acoustic Emissions — Two Tone Suppression , 1980 .

[81]  M. J. McCoy,et al.  Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. II. Asymmetry in L1,L2 space. , 1995, The Journal of the Acoustical Society of America.

[82]  William E. Brownell,et al.  Outer Hair Cell Electromotility and Otoacoustic Emissions , 1990, Ear and hearing.

[83]  W. T. Peake,et al.  Sound-pressure measurements in the cochlear vestibule of human-cadaver ears. , 1997, The Journal of the Acoustical Society of America.

[84]  E. ELLIOTT,et al.  A Ripple Effect in the Audiogram , 1958, Nature.

[85]  J. Allen,et al.  A second cochlear-frequency map that correlates distortion product and neural tuning measurements. , 1993, The Journal of the Acoustical Society of America.

[86]  J J Eggermont,et al.  Measuring human cochlear traveling wave delay using distortion product emission phase responses. , 1993, The Journal of the Acoustical Society of America.