Spectrofluorimetric quantification of antibiotic drug concentration in bacterial cells for the characterization of translocation across bacterial membranes

[1]  M. Picard,et al.  Biochemical Reconstitution and Characterization of Multicomponent Drug Efflux Transporters. , 2018, Methods in molecular biology.

[2]  H. Zgurskaya,et al.  Bifurcation kinetics of drug uptake by Gram-negative bacteria , 2017, PloS one.

[3]  C. González‐Bello Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics. , 2017, Bioorganic & medicinal chemistry letters.

[4]  B. Cinquin,et al.  Fluoroquinolone structure and translocation flux across bacterial membrane , 2017, Scientific Reports.

[5]  Brendan Prideaux,et al.  Comparing efficacies of moxifloxacin, levofloxacin and gatifloxacin in tuberculosis granulomas using a multi-scale systems pharmacology approach , 2017, PLoS Comput. Biol..

[6]  Jerry M. Parks,et al.  Identification and Structure-Activity Relationships of Novel Compounds that Potentiate the Activities of Antibiotics in Escherichia coli. , 2017, Journal of medicinal chemistry.

[7]  Michelle F. Richter,et al.  Predictive compound accumulation rules yield a broad-spectrum antibiotic , 2017, Nature.

[8]  J. Herbeuval,et al.  Microspectrofluorimetry to dissect the permeation of ceftazidime in Gram-negative bacteria , 2017, Scientific Reports.

[9]  J. Pagés,et al.  Erratum: Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A , 2017, Nature Microbiology.

[10]  L. Silver A Gestalt approach to Gram-negative entry. , 2016, Bioorganic & medicinal chemistry.

[11]  Gerard D. Wright Antibiotic Adjuvants: Rescuing Antibiotics from Resistance. , 2016, Trends in microbiology.

[12]  Jon W. Weeks,et al.  Breaking the Permeability Barrier of Escherichia coli by Controlled Hyperporination of the Outer Membrane , 2016, Antimicrobial Agents and Chemotherapy.

[13]  M. Cooper,et al.  Fluorescent Trimethoprim Conjugate Probes To Assess Drug Accumulation in Wild Type and Mutant Escherichia coli , 2016, ACS infectious diseases.

[14]  L. Piddock,et al.  How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps , 2016, mBio.

[15]  M. Fontaine‐Aupart,et al.  New Insight into Daptomycin Bioavailability and Localization in Staphylococcus aureus Biofilms by Dynamic Fluorescence Imaging , 2016, Antimicrobial Agents and Chemotherapy.

[16]  B. Cinquin,et al.  Microspectrometric insights on the uptake of antibiotics at the single bacterial cell level , 2015, Scientific Reports.

[17]  David Brown,et al.  Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? , 2015, Nature Reviews Drug Discovery.

[18]  L. R. Martinez,et al.  Microbicides Alter the Expression and Function of RND-Type Efflux Pump AdeABC in Biofilm-Associated Cells of Acinetobacter baumannii Clinical Isolates , 2015, Antimicrobial Agents and Chemotherapy.

[19]  M. Bassetti,et al.  New antibiotics and antimicrobial combination therapy for the treatment of gram-negative bacterial infections , 2015, Current opinion in critical care.

[20]  S Gnanakaran,et al.  Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. , 2015, ACS infectious diseases.

[21]  J. Claverie,et al.  In Vivo Evolution of Bacterial Resistance in Two Cases of Enterobacter aerogenes Infections during Treatment with Imipenem , 2015, PloS one.

[22]  M. Winterhalter,et al.  Physical methods to quantify small antibiotic molecules uptake into Gram-negative bacteria. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[23]  Hiroshi Nikaido,et al.  The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria , 2015, Clinical Microbiology Reviews.

[24]  Elizabeth M. Nolan,et al.  Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. , 2015, Biochemistry.

[25]  M. Webber,et al.  Molecular mechanisms of antibiotic resistance , 2014, Nature Reviews Microbiology.

[26]  Dean G. Brown,et al.  Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. , 2014, Journal of medicinal chemistry.

[27]  M. Page,et al.  Discovery and development of new antibacterial agents targeting Gram-negative bacteria in the era of pandrug resistance: is the future promising? , 2014, Current opinion in pharmacology.

[28]  Derek S. Tan,et al.  General Platform for Systematic Quantitative Evaluation of Small-Molecule Permeability in Bacteria , 2014, ACS chemical biology.

[29]  A. Pantel,et al.  French regional surveillance program of carbapenemase-producing Gram-negative bacilli: results from a 2-year period , 2014, European Journal of Clinical Microbiology and Infectious Diseases.

[30]  M. Winterhalter,et al.  TRANSLOCATION Project: How to Get Good Drugs into Bad Bugs , 2014, Science Translational Medicine.

[31]  Jesmin Akter,et al.  Probing the Penetration of Antimicrobial Polymyxin Lipopeptides into Gram-Negative Bacteria , 2014, Bioconjugate chemistry.

[32]  Frédéric Jamme,et al.  Deep UV autofluorescence microscopy for cell biology and tissue histology , 2013, Biology of the cell.

[33]  Seiji Kojima,et al.  Permeation rates of penicillins indicate that Escherichia coli porins function principally as nonspecific channels , 2013, Proceedings of the National Academy of Sciences.

[34]  Ronald N. Jones,et al.  10 x '20 Progress--development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. , 2013, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[35]  J. Pagés,et al.  New Peptide-based antimicrobials for tackling drug resistance in bacteria: single-cell fluorescence imaging. , 2013, ACS medicinal chemistry letters.

[36]  P. Tulkens,et al.  A Combined Pharmacodynamic Quantitative and Qualitative Model Reveals the Potent Activity of Daptomycin and Delafloxacin against Staphylococcus aureus Biofilms , 2013, Antimicrobial Agents and Chemotherapy.

[37]  K. Ritchie,et al.  Single-molecule imaging in live bacteria cells , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  J. Pagés,et al.  Antibiotic Transport in Resistant Bacteria: Synchrotron UV Fluorescence Microscopy to Determine Antibiotic Accumulation with Single Cell Resolution , 2012, PloS one.

[39]  H. Nikaido,et al.  Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. , 2012, FEMS microbiology reviews.

[40]  J. Handzlik,et al.  Strategies for bypassing the membrane barrier in multidrug resistant Gram‐negative bacteria , 2011, FEBS letters.

[41]  E. Batard,et al.  Diffusion of Ofloxacin in the Endocarditis Vegetation Assessed with Synchrotron Radiation UV Fluorescence Microspectrocopy , 2011, PloS one.

[42]  Frank Wien,et al.  Synchrotron UV Fluorescence Microscopy Uncovers New Probes in Cells and Tissues , 2010, Microscopy and Microanalysis.

[43]  H. Nikaido,et al.  Kinetic Parameters of Efflux of Penicillins by the Multidrug Efflux Transporter AcrAB-TolC of Escherichia coli , 2010, Antimicrobial Agents and Chemotherapy.

[44]  Hiroshi Nikaido,et al.  Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli , 2009, Proceedings of the National Academy of Sciences.

[45]  J. Bartlett,et al.  Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[46]  M. Winterhalter,et al.  The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria , 2008, Nature Reviews Microbiology.

[47]  J. Pagés,et al.  Membrane permeability and regulation of drug "influx and efflux" in enterobacterial pathogens. , 2008, Current drug targets.

[48]  H. Moser,et al.  Physicochemical properties of antibacterial compounds: implications for drug discovery. , 2008, Journal of medicinal chemistry.

[49]  J. Pagés,et al.  An Early Response to Environmental Stress Involves Regulation of OmpX and OmpF, Two Enterobacterial Outer Membrane Pore-Forming Proteins , 2007, Antimicrobial Agents and Chemotherapy.

[50]  D. Pompliano,et al.  Drugs for bad bugs: confronting the challenges of antibacterial discovery , 2007, Nature Reviews Drug Discovery.

[51]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[52]  J. Pagés,et al.  Imipenem and expression of multidrug efflux pump in Enterobacter aerogenes. , 2003, Biochemical and biophysical research communications.

[53]  J. Pagés,et al.  The AcrAB-TolC Efflux Pump Contributes to Multidrug Resistance in the Nosocomial Pathogen Enterobacter aerogenes , 2002, Antimicrobial Agents and Chemotherapy.

[54]  L. Piddock,et al.  Accumulation of 10 Fluoroquinolones by Wild-Type or Efflux Mutant Streptococcus pneumoniae , 2002, Antimicrobial Agents and Chemotherapy.

[55]  L. Piddock,et al.  Accumulation of five fluoroquinolones by Mycobacterium tuberculosis H37Rv. , 2001, The Journal of antimicrobial chemotherapy.

[56]  V. Ricci,et al.  Accumulation of Norfloxacin byBacteroides fragilis , 2000, Antimicrobial Agents and Chemotherapy.

[57]  H. Nikaido,et al.  Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[58]  L. Piddock,et al.  Quinolone accumulation by Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. , 1999, The Journal of antimicrobial chemotherapy.

[59]  R. Hancock,et al.  The bacterial outer membrane as a drug barrier. , 1997, Trends in microbiology.

[60]  H. Nikaido,et al.  AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants , 1996, Journal of bacteriology.

[61]  L. Piddock,et al.  The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli. , 1993, The Journal of antimicrobial chemotherapy.

[62]  H. Nikaido Outer membrane barrier as a mechanism of antimicrobial resistance , 1989, Antimicrobial Agents and Chemotherapy.

[63]  N. Georgopapadakou,et al.  Fluorometric assay for fleroxacin uptake by bacterial cells , 1989, Antimicrobial Agents and Chemotherapy.

[64]  J. Dick,et al.  Determination of norfloxacin and ciprofloxacin concentrations in serum and urine by high-pressure liquid chromatography , 1986, Antimicrobial Agents and Chemotherapy.

[65]  B. Joos,et al.  Comparison of high-pressure liquid chromatography and bioassay for determination of ciprofloxacin in serum and urine , 1985, Antimicrobial Agents and Chemotherapy.

[66]  F. Yoshimura,et al.  Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12 , 1985, Antimicrobial Agents and Chemotherapy.

[67]  A. M. George,et al.  Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline , 1983, Journal of bacteriology.

[68]  H. Nikaido,et al.  Porin channels in Escherichia coli: studies with beta-lactams in intact cells , 1983, Journal of bacteriology.