Strategies for Dividend Distribution: A Review

Abstract In today’s world of financial uncertainty, one major public concern is to assess (and possibly improve) the stability of companies that take on risks. Actuaries have been aware of that issue for a very long time and have a great experience in modeling the activity of a risk business. During the first part of the twentieth century, they focused on the probability of ruin to assess the stability of their company. In his seminal paper of 1957 Bruno de Finetti criticized this approach and laid the foundations of what would become an increasingly popular topic: the study of dividend strategies. The contributions made by actuaries in that field constitute a substantial body of knowledge, whose interest is relevant not only to insurance but also to a much broader range of areas of practice. In this paper we aim at a taxonomical synthesis of the 50 years of actuarial research that followed de Finetti’s original paper.

[1]  Gordon E. Willmot,et al.  The Compound Poisson Surplus Model with Interest and Liquid Reserves: Analysis of the Gerber–Shiu Discounted Penalty Function , 2009 .

[2]  R. Wu,et al.  Optimal dividends in the Brownian motion risk model with interest , 2009 .

[3]  Shu-Hsing Chung,et al.  A scenario-based stochastic programming model for the control or dummy wafers downgrading problem , 2009 .

[4]  Andrew Cheuk-Yin Ng,et al.  On a dual model with a dividend threshold , 2009 .

[5]  Yi Lu,et al.  The Markovian regime-switching risk model with a threshold dividend strategy , 2009 .

[6]  Onno Boxma,et al.  The tax identity in risk theory — a simple proof and an extension , 2009 .

[7]  Lin He,et al.  Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs , 2009 .

[8]  Steve Drekic,et al.  Dividend Moments in the Dual Risk Model: Exact and Approximate Approaches , 2008 .

[9]  Xin Zhang,et al.  Total duration of negative surplus for the dual model , 2008 .

[10]  K. Yuen,et al.  On a risk model with debit interest and dividend payments , 2008 .

[11]  R. Loeffen,et al.  On optimality of the barrier strategy in de Finetti’s dividend problem for spectrally negative Lévy processes , 2008, 0811.1862.

[12]  H. Gerber,et al.  Optimal dividends with incomplete information in the dual model , 2008 .

[13]  Hanspeter Schmidli,et al.  Optimal dividend strategies in a Cramér–Lundberg model with capital injections , 2008 .

[14]  Hailiang Yang,et al.  Ruin Probabilities of a Dual Markov-Modulated Risk Model , 2008 .

[15]  Hansjörg Albrecher,et al.  Optimal dividend strategies for a risk process under force of interest , 2008 .

[16]  Benjamin Avanzi,et al.  Optimal Dividends in the Dual Model with Diffusion , 2008 .

[17]  Eric C. K. Cheung,et al.  Moments of Discounted Dividends for a Threshold Strategy in the Compound Poisson Risk Model , 2008 .

[18]  Eric C. K. Cheung “Recursive Calculation of the Dividend Moments in a Multi-Threshold Risk Model,” Andrei Badescu and David Landriault, January 2008 , 2008 .

[19]  Lin He,et al.  Optimal financing and dividend control of the insurance company with proportional reinsurance policy , 2008 .

[20]  Mihail Zervos,et al.  Optimal dividend and issuance of equity policies in the presence of proportional costs , 2008 .

[21]  Zhimin Zhang,et al.  Gerber-Shiu discounted penalty function in a Sparre Andersen model with multi-layer dividend strategy , 2008 .

[22]  Hansjörg Albrecher,et al.  On the dual risk model with tax payments , 2008 .

[23]  Hansjörg Albrecher,et al.  A Lévy Insurance Risk Process with Tax , 2008, Journal of Applied Probability.

[24]  Shuanming Li,et al.  The Decompositions of the Discounted Penalty Functions and Dividends-Penalty Identity in a Markov-Modulated Risk Model , 2008, ASTIN Bulletin.

[25]  Esther Frostig,et al.  On Risk Model with Dividends Payments Perturbed by a Brownian Motion – An Algorithmic Approach , 2008, ASTIN Bulletin.

[26]  Kristina P. Sendova,et al.  The compound Poisson risk model with multiple thresholds , 2008 .

[27]  David Landriault,et al.  Randomized dividends in the compound binomial model with a general premium rate , 2008 .

[28]  H. Gerber,et al.  Methods for estimating the optimal dividend barrier and the probability of ruin , 2008 .

[29]  David Landriault,et al.  Constant dividend barrier in a risk model with interclaim-dependent claim sizes , 2008 .

[30]  Hailiang Yang,et al.  Ruin theory for a Markov regime-switching model under a threshold dividend strategy , 2008 .

[31]  A. Kyprianou,et al.  Refracted Levy processes and ruin , 2008 .

[32]  D. Landriault,et al.  Recursive Calculation of the Dividend Moments in a Multi-threshold Risk Model , 2008 .

[33]  Zhen-hua Bao,et al.  A note on the compound binomial model with randomized dividend strategy , 2007, Appl. Math. Comput..

[34]  H. Schmidli,et al.  Stochastic control in insurance , 2007 .

[35]  H. Albrecher,et al.  On Exact Solutions for Dividend Strategies of Threshold and Linear Barrier Type in a Sparre Andersen Model* , 2007, ASTIN Bulletin.

[36]  Jostein Paulsen,et al.  Optimal dividend payments until ruin of diffusion processes when payments are subject to both fixed and proportional costs , 2007, Advances in Applied Probability.

[37]  Zong Zhao-jun,et al.  ASYMPTOTIC THEORY FOR A RISK PROCESS WITH A HIGH DIVIDEND BARRIER , 2007 .

[38]  So-Yeun Kim,et al.  Topics in Delayed Renewal Risk Models , 2007 .

[39]  Benjamin Avanzi,et al.  Optimal dividends in the dual model , 2007 .

[40]  Hansjörg Albrecher,et al.  Dividend maximization under consideration of the time value of ruin , 2007 .

[41]  Jiwook Jang Jump diffusion processes and their applications in insurance and finance , 2007 .

[42]  Hui Meng,et al.  The expectation of aggregate discounted dividends for a Sparre Anderson risk process perturbed by diffusion , 2007 .

[43]  Z. Palmowski,et al.  Distributional Study of De Finetti's Dividend Problem for a General Lévy Insurance Risk Process , 2007, Journal of Applied Probability.

[44]  Xiaowen Zhou,et al.  Distribution of the Present Value of Dividend Payments in a Lévy Risk Model , 2007, Journal of Applied Probability.

[45]  W. Schachermayer,et al.  Optimal expected exponential utility of dividend payments in a Brownian risk model , 2007 .

[46]  Ning Wan,et al.  Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion , 2007 .

[47]  Hansjörg Albrecher,et al.  Lundberg’s risk process with tax , 2007 .

[48]  Shuanming Li,et al.  Moments of the Dividend Payments and Related Problems in a Markov-Modulated Risk Model , 2007 .

[49]  Vaidyanathan Ramaswami,et al.  Time dependent analysis of finite buffer fluid flows and risk models with a dividend barrier , 2007, Queueing Syst. Theory Appl..

[50]  Hansjörg Albrecher,et al.  A Risk Model with Multilayer Dividend Strategy , 2007 .

[51]  E. Bayraktar,et al.  Optimizing venture capital investments in a jump diffusion model , 2007, Math. Methods Oper. Res..

[52]  Manuel Morales On the expected discounted penalty function for a perturbed risk process driven by a subordinator , 2007 .

[53]  Rong Wu,et al.  Optimal Dividend Strategy in the Compound Poisson Model with Constant Interest , 2007 .

[54]  Florin Avram,et al.  On the optimal dividend problem for a spectrally negative Lévy process , 2007, math/0702893.

[55]  Yue Kuen Kwok,et al.  Finite Time Dividend-Ruin Models , 2007 .

[56]  Lixin Song,et al.  The Dividend Payments for General Claim Size Distributions under Interest Rate , 2007 .

[57]  F. Zapatero,et al.  OPTIMAL DIVIDEND POLICY WITH MEAN‐REVERTING CASH RESERVOIR , 2007 .

[58]  H. Gerber,et al.  A Note on the Dividends-Penalty Identity and the Optimal Dividend Barrier , 2006, ASTIN Bulletin.

[59]  José Garrido,et al.  On The Expected Discounted Penalty function for Lévy Risk Processes , 2006 .

[60]  D. Dickson,et al.  Optimal Dividends Under a Ruin Probability Constraint , 2006, Annals of Actuarial Science.

[61]  David Landriault,et al.  On a risk model with dependence between interclaim arrivals and claim sizes , 2006 .

[62]  Jiyang Tan,et al.  The compound binomial model with randomized decisions on paying dividends , 2006 .

[63]  Hans U. Gerber,et al.  Maximizing Dividends without Bankruptcy , 2006, ASTIN Bulletin.

[64]  Hans U. Gerber,et al.  On Optimal Dividend Strategies In The Compound Poisson Model , 2006 .

[65]  H. Gerber,et al.  Optimal Dividends In An Ornstein-Uhlenbeck Type Model With Credit And Debit Interest , 2006 .

[66]  Shuanming Li The distribution of the dividend payments in the compound poisson risk model perturbed by diffusion , 2006 .

[67]  Hansjörg Albrecher,et al.  Exponential behavior in the presence of dependence in risk theory , 2006 .

[68]  X. Sheldon Lin,et al.  The compound Poisson risk model with a threshold dividend strategy , 2006 .

[69]  Shuanming Li,et al.  The Diffusion Perturbed Compound Poisson RiskModel with a Dividend Barrier , 2006 .

[70]  Hans U. Gerber,et al.  On optimal dividends: From reflection to refraction , 2006 .

[71]  Lei Zhang,et al.  CLASSICAL AND IMPULSE STOCHASTIC CONTROL FOR THE OPTIMIZATION OF THE DIVIDEND AND RISK POLICIES OF AN INSURANCE FIRM , 2006 .

[72]  Stéphane Loisel,et al.  The win-first probability under interest force , 2005 .

[73]  J. Paulsen,et al.  Flow of Dividends under a Constant Force of Interest , 2005 .

[74]  Esther Frostig,et al.  The expected time to ruin in a risk process with constant barrier via martingales , 2005 .

[75]  Hansjörg Albrecher,et al.  On the distribution of dividend payments in a Sparre Andersen model with generalized Erlang(n) interclaim times , 2005 .

[76]  Xiaowen Zhou,et al.  On a Classical Risk Model with a Constant Dividend Barrier , 2005 .

[77]  E. Frostig On the expected time to ruin and the expected dividends when dividends are paid while the surplus is above a constant barrier , 2005 .

[78]  Arusharka Sen,et al.  Weak convergence approach to compound Poisson risk processes perturbed by diffusion , 2005 .

[79]  Jürgen Hartinger,et al.  On the distribution of dividend payments and the discounted penalty function in a risk model with linear dividend barrier , 2005 .

[80]  P. Azcue,et al.  OPTIMAL REINSURANCE AND DIVIDEND DISTRIBUTION POLICIES IN THE CRAMÉR‐LUNDBERG MODEL , 2005 .

[81]  José Garrido,et al.  On a class of renewal risk models with a constant dividend barrier , 2004 .

[82]  Christian Mazza,et al.  A link between wave governed random motions and ruin processes , 2004 .

[83]  Onno Boxma,et al.  A ruin model with dependence between claim sizes and claim intervals , 2004 .

[84]  S. Eddy What is dynamic programming? , 2004, Nature Biotechnology.

[85]  Michael A. Zazanis,et al.  Smoothed Monte Carlo estimators for the time-in-the-red in risk processes , 2004, Math. Methods Oper. Res..

[86]  Bjarne Højgaard,et al.  Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy , 2004 .

[87]  Howard R. Waters,et al.  Some Optimal Dividends Problems , 2004, ASTIN Bulletin.

[88]  W. Schachermayer,et al.  Optimizing Expected Utility of Dividend Payments for a Brownian Risk Process and a Peculiar Nonlinear ODE , 2004 .

[89]  Hans U. Gerber,et al.  Optimal Dividends , 2004 .

[90]  Nicole Bäuerle,et al.  Approximation of Optimal Reinsurance and Dividend Payout Policies , 2004 .

[91]  Gordon E. Willmot,et al.  The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function , 2003 .

[92]  H. Gerber,et al.  Geometric Brownian Motion Models for Assets and Liabilities: From Pension Funding to Optimal Dividends , 2003 .

[93]  Hansjörg Albrecher,et al.  Simulation methods in ruin models with non-linear dividend barriers , 2003, Math. Comput. Simul..

[94]  C. Wagner,et al.  Time in the red in a two state Markov model , 2002 .

[95]  Hansjörg Albrecher,et al.  Risk Theory with a nonlinear Dividend Barrier , 2002, Computing.

[96]  José Garrido,et al.  On the time value of ruin in the discrete time risk model , 2002 .

[97]  Suresh Sethi,et al.  Optimal Financing of a Corporation Subject To Random Returns , 2002 .

[98]  Gordon E. Willmot,et al.  A generalized defective renewal equation for the surplus process perturbed by diffusion , 2002 .

[99]  Bjarne Højgaard,et al.  Optimal Dynamic Premium Control in Non-life Insurance. Maximizing Dividend Pay-outs , 2002 .

[100]  Michael I. Taksar,et al.  Optimal risk control for a large corporation in the presence of returns on investments , 2001, Finance Stochastics.

[101]  K. Yuen,et al.  Ruin probabilities for time-correlated claims in the compound binomial model , 2001 .

[102]  Hailiang Yang,et al.  Spectrally negative Lévy processes with applications in risk theory , 2001, Advances in Applied Probability.

[103]  Søren Asmussen,et al.  Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation , 2000, Finance Stochastics.

[104]  Hans U. Gerber,et al.  Discounted probabilities and ruin theory in the compound binomial model , 2000 .

[105]  Michael I. Taksar,et al.  Optimal risk and dividend distribution control models for an insurance company , 2000, Math. Methods Oper. Res..

[106]  Michael I. Taksar,et al.  Controlling Risk Exposure and Dividends Payout Schemes:Insurance Company Example , 1999 .

[107]  Robert F. Tichy,et al.  A process with stochastic claim frequency and a linear dividend barrier , 1999 .

[108]  Bjarne Højgaard,et al.  Optimal proportional reinsurance policies for diffusion models , 1998 .

[109]  Hans U. Gerber,et al.  On the discounted penalty at ruin in a jump-diffusion and the perpetual put option , 1998 .

[110]  Xun Yu Zhou,et al.  Optimal risk and dividend control for a company with a debt liability , 1998 .

[111]  D. Dickson,et al.  The effect of interest on negative surplus , 1997 .

[112]  Jostein Paulsen,et al.  Optimal choice of dividend barriers for a risk process with stochastic return on investments , 1997 .

[113]  Søren Asmussen,et al.  Controlled diffusion models for optimal dividend pay-out , 1997 .

[114]  Larry A. Shepp,et al.  Risk vs. profit potential: A model for corporate strategy , 1996 .

[115]  Alistair Milne,et al.  Firm behaviour under the threat of liquidation , 1996 .

[116]  F. De Vylder,et al.  Classical numerical ruin probabilities , 1996 .

[117]  A. Shiryaev,et al.  Optimization of the flow of dividends , 1995 .

[118]  P. Picard On some measures of the severity of ruin in the classical Poisson model , 1994 .

[119]  David C.M. Dickson,et al.  Some Comments on the Compound Binomial Model , 1994, ASTIN Bulletin.

[120]  Alfredo D. Egídio dos Reis,et al.  How long is the surplus below zero , 1993 .

[121]  H. Waters,et al.  Recursive Calculation of Survival Probabilities , 1991, ASTIN Bulletin.

[122]  Hans U. Gerber,et al.  Risk theory for the compound Poisson process that is perturbed by diffusion , 1991 .

[123]  Elias S. W. Shiu,et al.  The Probability of Eventual Ruin in the Compound Binomial Model , 1989, ASTIN Bulletin.

[124]  S. Asmussen Risk theory in a Markovian environment , 1989 .

[125]  K. Waldmann On optimal dividend payments and related problems , 1988 .

[126]  Hans U. Gerber,et al.  Mathematical Fun with the Compound Binomial Process , 1988, ASTIN Bulletin.

[127]  Mark H. A. Davis Piecewise‐Deterministic Markov Processes: A General Class of Non‐Diffusion Stochastic Models , 1984 .

[128]  J. Reinhard,et al.  On a Class of Semi-Markov Risk Models Obtained as Classical Risk Models in a Markovian Environment , 1984, ASTIN Bulletin.

[129]  H. Gerber,et al.  The Wiener process with drift between a linear retaining and an absorbing barrier , 1981 .

[130]  Hans U. Gerber,et al.  On the probability of ruin in the presence of a linear dividend barrier , 1981 .

[131]  H. Gerber A Characteristic Property of the Poisson Distribution , 1979 .

[132]  Pantelis M. Pechlivanides Optimal Reinsurance and Dividend Payment Strategies , 1978, ASTIN Bulletin.

[133]  H. D. Miller,et al.  The Theory Of Stochastic Processes , 1977, The Mathematical Gazette.

[134]  Evan L. Porteus On Optimal Dividend, Reinvestment, and Liquidation Policies for the Firm , 1977, Oper. Res..

[135]  Harvey E. Lapan,et al.  The Mathematical Theory of Insurance. , 1975 .

[136]  F. Black,et al.  The Valuation of Option Contracts and a Test of Market Efficiency , 1972 .

[137]  Hans U. Gerber,et al.  Games of Economic Survival with Discrete- and Continuous-Income Processes , 1972, Oper. Res..

[138]  Alexander Pollatsek,et al.  A theory of risk , 1970 .

[139]  Hans Bühlmann,et al.  Mathematical Methods in Risk Theory , 1970 .

[140]  P. Giles Stochastic Theory of a Risk Business , 1970 .

[141]  S. Zacks,et al.  Combinatorial Methods in the Theory of Stochastic Processes , 1968 .

[142]  H. D. Miller Combinatorial methods in the theory of stochastic processes , 1968, Comput. J..

[143]  K. Borch THE THEORY OF CONTROL PROCESSES APPLIED TO INSURANCE COMPANIES , 1967 .

[144]  K. Borch,et al.  The Theory of Risk , 1967 .

[145]  John E. Morrill One‐person games of economic survival , 1966 .

[146]  D. Blackwell Discounted Dynamic Programming , 1965 .

[147]  K. Borch THE OPTIMAL MANAGEMENT POLICY OF AN INSURANCE COMPANY , 1964 .

[148]  J. Fred Weston,et al.  The Investment, Financing, and Valuation of the Corporation. , 1963 .

[149]  K. Miyasawa AN ECONOMIC SURVIVAL GAME , 1961 .

[150]  B. Weesakul,et al.  The Random Walk Between a Reflecting and an Absorbing Barrier , 1961 .

[151]  K. Borch The Utility Concept Applied to the Theory of Insurance , 1961, ASTIN Bulletin.

[152]  G. Thompson,et al.  Games of economic survival , 1959 .

[153]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[154]  Richard Bellman Dynamic Programming , 1957, Science.

[155]  P. Moran,et al.  A characteristic property of the Poisson distribution , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[156]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[157]  G. Edwards,et al.  The Theory of Investment Value. , 1939 .

[158]  Eric C. K. Cheung,et al.  Dividend Moments in the Dual Model : Exact and Approximate Approaches , 2008 .

[159]  Shuanming Li The Moments of the Present Value of Total Dividends in the Compound Binomial Model Under a Constant Dividend Barrier and Stochastic Interest Rates , 2008 .

[160]  K. Yuen,et al.  The Classical Risk Model with Constant Interest and Threshold Strategy , 2008 .

[161]  Yinghui Dong,et al.  On a compounding assets model with positive jumps , 2008 .

[162]  Gao Qing-wu The Poisson risk model with constant interest rate under a threshold dividend strategy——Gerber-Shiu discounted penalty function , 2008 .

[163]  W. Li,et al.  The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier , 2007 .

[164]  D. Dickson,et al.  Optimal Dividends under Reinsurance , 2007 .

[165]  Shuanming Li,et al.  On a discrete time risk model with delayed claimsand a constant dividend barrier , 2006 .

[166]  Ecole Isfa,et al.  The win-first probability under interest force , 2005 .

[167]  Stéphane Loisel,et al.  Time to ruin, insolvency penalties and dividends in a Markov-modulated multi-risk model with common shocks , 2004 .

[168]  D. Kerekesha An exact solution of the risk equation with a step current reserve function , 2004 .

[169]  Z. Chunsheng RUIN PROBABILITIES FOR TIME-CORRELATED CLAIMS , 2003 .

[170]  Maite Mármol,et al.  Expected present value of dividends with a constant barrier in the discrete time model , 2002 .

[171]  Hansjörg Furrer,et al.  Risk processes perturbed by α-stable Lévy motion , 1998 .

[172]  H. Gerber,et al.  On the Time Value of Ruin , 1997 .

[173]  H. Cramér On the Mathematical Theory of Risk , 1994 .

[174]  Paul Embrechts,et al.  Martingales and insurance risk , 1989 .

[175]  Marc Goovaerts,et al.  Recursive calculation of finite-time ruin probabilities , 1988 .

[176]  D. P. Gaver,et al.  Optimal Consumption for General Diffusions with Absorbing and Reflecting Barriers , 1984 .

[177]  M. Eisen,et al.  Probability and its applications , 1975 .

[178]  H. Gerber The dilemma between dividends and safety and a generalization of the Lundberg-Cramér formulas , 1974 .

[179]  Hans-Ulrich Gerber,et al.  Entscheidungskriterien für den zusammengesetzten Poisson-Prozess , 1969 .

[180]  M. Gordon,et al.  The Investment, Financing, and Valuation of the Corporation , 1962 .

[181]  G. Debreu Topological Methods in Cardinal Utility Theory , 1959 .

[182]  Harald Cramér,et al.  Collective risk theory : a survey of the theory from the point of view of the theory of stochastic processes , 1955 .

[183]  Filip Lundberg,et al.  Über die Theorie der Rückversicherung , 1909 .

[184]  Yi Lu,et al.  The Markovian regime-switching risk model with a threshold dividend strategy , 2022 .