Effect of different carbon sources on the growth of single-walled carbon nanotube from MCM-41 containing nickel

[1]  Lain‐Jong Li,et al.  The effects of nitrogen and boron doping on the optical emission and diameters of single-walled carbon nanotubes , 2006 .

[2]  Jin Zhao,et al.  Role of the catalyst in the growth of single-wall carbon nanotubes. , 2006, Journal of nanoscience and nanotechnology.

[3]  H. Dai,et al.  Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  F. Gygi,et al.  Growth of carbon nanotubes on metal nanoparticles: a microscopic mechanism from ab initio molecular dynamics simulations. , 2005, Physical review letters.

[5]  M. Fernández-García,et al.  X-ray absorption spectroscopic investigation of partially reduced cobalt species in Co-MCM-41 catalysts during synthesis of single-wall carbon nanotubes. , 2005, The journal of physical chemistry. B.

[6]  S. Suib,et al.  Decomposition of methane with an autocatalytically reduced nickel catalyst , 2005 .

[7]  M. Payne,et al.  Surface diffusion: the low activation energy path for nanotube growth. , 2005, Physical review letters.

[8]  Yanhui Yang,et al.  Synthesis and characterization of highly ordered Ni-MCM-41 mesoporous molecular sieves. , 2005, The journal of physical chemistry. B.

[9]  L. Pfefferle,et al.  Single-wall carbon nanotube synthesis by CO disproportionation on nickel-incorporated MCM-41 , 2005, Nanotechnology.

[10]  K. Hata,et al.  Selective matching of catalyst element and carbon source in single-walled carbon nanotube synthesis on silicon substrates. , 2005, The journal of physical chemistry. B.

[11]  Yuan Chen,et al.  Effect of Co-MCM-41 Conversion to Cobalt Silicate for Catalytic Growth of Single Wall Carbon Nanotubes , 2004 .

[12]  G. Choi,et al.  The determining factors for the growth mode of carbon nanotubes in the chemical vapour deposition process , 2004 .

[13]  Limin Huang,et al.  Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition , 2004 .

[14]  L. Pfefferle,et al.  MECHANISM OF COBALT CLUSTER SIZE CONTROL IN CO-MCM-41 DURING SINGLE-WALL CARBON NANOTUBES SYNTHESIS BY CO DISPROPORTIONATION , 2004 .

[15]  L. Pfefferle,et al.  Synthesis of uniform diameter single wall carbon nanotubes in Co-MCM-41: effects of CO pressure and reaction time , 2004 .

[16]  L. Pfefferle,et al.  Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41: effects of the catalyst prereduction and nanotube growth temperatures , 2004 .

[17]  Shigeo Maruyama,et al.  Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy , 2004 .

[18]  M. Dresselhaus,et al.  Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly , 2003, Science.

[19]  L. Pfefferle,et al.  Synthesis and characterization of highly ordered Co-MCM-41 for production of aligned single walled carbon nanotubes (SWNT) , 2003 .

[20]  Z. Yao,et al.  Effects of methane partial pressure on synthesis of single-walled carbon nanotubes by chemical vapor deposition , 2003 .

[21]  Carter Kittrell,et al.  Assignment of (n, m) Raman and Optical Features of Metallic Single-Walled Carbon Nanotubes , 2003 .

[22]  J. M. Kim,et al.  Effects of source gases on the growth of carbon nanotubes , 2003 .

[23]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[24]  Jean-Christophe Charlier,et al.  Microscopic mechanisms for the catalyst assisted growth of single-wall carbon nanotubes , 2002 .

[25]  J. Nørskov,et al.  Steam Reforming and Graphite Formation on Ni Catalysts , 2002 .

[26]  Masamichi Kohno,et al.  Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol , 2002 .

[27]  Daniel E. Resasco,et al.  Characterization of single-walled carbon nanotubes (SWNTs) produced by CO disproportionation on Co-Mo catalysts , 2002 .

[28]  A. Züttel,et al.  Metal nanoparticles for the production of carbon nanotube composite materials by decomposition of different carbon sources , 2002 .

[29]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[30]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[31]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[32]  Z. Gu,et al.  Purification of single-walled carbon nanotubes , 1999 .

[33]  Alan M. Cassell,et al.  Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes , 1999 .

[34]  A. Ankudinov,et al.  REAL-SPACE MULTIPLE-SCATTERING CALCULATION AND INTERPRETATION OF X-RAY-ABSORPTION NEAR-EDGE STRUCTURE , 1998 .

[35]  Alan M. Cassell,et al.  Chemical vapor deposition of methane for single-walled carbon nanotubes , 1998 .

[36]  A. M. Rao,et al.  Large-scale purification of single-wall carbon nanotubes: process, product, and characterization , 1998 .

[37]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[38]  Young Hee Lee,et al.  Catalytic Growth of Single-Wall Carbon Nanotubes: An Ab Initio Study , 1997 .

[39]  Bruce Ravel,et al.  The UWXAFS analysis package : philosophy and details , 1995 .

[40]  R. J. Waite,et al.  Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene , 1972 .

[41]  E. Barrett,et al.  The Determination of Pore Volume and Area Distributions in Porous Substances. II. Comparison between Nitrogen Isotherm and Mercury Porosimeter Methods , 1951 .

[42]  L. Pfefferle,et al.  The effect of the cobalt loading on the growth of single wall carbon nanotubes by CO disproportionation on Co-MCM-41 catalysts , 2006 .

[43]  L. Pfefferle,et al.  Uniform-Diameter Single-Walled Carbon Nanotubes Catalytically Grown in Cobalt-Incorporated MCM-41 , 2004 .

[44]  Hao Yan,et al.  Effect of hydrocarbons precursors on the formation of carbon nanotubes in chemical vapor deposition , 2004 .

[45]  Riichiro Saito,et al.  Physics of carbon nanotubes , 1995 .

[46]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .