Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants

Abstract The Japanese sea cucumber (Apostichopus japonicus Selenka 1867) is an economically important species as a source of seafood and ingredient in traditional medicine. It is mainly found off the coasts of northeast Asia. Recently, substantial exploitation and widespread biotic diseases in A. japonicus have generated increasing conservation concern. However, the genomic knowledge base and resources available for researchers to use in managing this natural resource and to establish genetically based breeding systems for sea cucumber aquaculture are still in a nascent stage. A total of 312 Gb of raw sequences were generated using the Illumina HiSeq 2000 platform and assembled to a final size of 0.66 Gb, which is about 80.5% of the estimated genome size (0.82 Gb). We observed nucleotide-level heterozygosity within the assembled genome to be 0.986%. The resulting draft genome assembly comprising 132 607 scaffolds with an N50 value of 10.5 kb contains a total of 21 771 predicted protein-coding genes. We identified 6.6–14.5 million heterozygous single nucleotide polymorphisms in the assembled genome of the three natural color variants (green, red, and black), resulting in an estimated nucleotide diversity of 0.00146. We report the first draft genome of A. japonicus and provide a general overview of the genetic variation in the three major color variants of A. japonicus. These data will help provide a comprehensive view of the genetic, physiological, and evolutionary relationships among color variants in A. japonicus, and will be invaluable resources for sea cucumber genomic research.

[1]  Andrew R. Jackson,et al.  The Genome of the Sea Urchin Strongylocentrotus purpuratus , 2006, Science.

[2]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[3]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[4]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[5]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[6]  Jongsun Park,et al.  Comparative transcriptome analysis of three color variants of the sea cucumber Apostichopus japonicus. , 2016, Marine genomics.

[7]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[8]  Stephen M. Mount,et al.  Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. , 2003, Nucleic acids research.

[9]  S. Purcell Value, Market Preferences and Trade of Beche-De-Mer from Pacific Island Sea Cucumbers , 2014, PloS one.

[10]  O. Kohany,et al.  Repbase Update, a database of repetitive elements in eukaryotic genomes , 2015, Mobile DNA.

[11]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[12]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[13]  Nicholas H. Putnam,et al.  Low coverage sequencing of three echinoderm genomes: the brittle star Ophionereis fasciata, the sea star Patiriella regularis, and the sea cucumber Australostichopus mollis , 2016, GigaScience.

[14]  Farooq Anwar,et al.  High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review , 2011, Marine drugs.

[15]  J. Hamel,et al.  The sea cucumber Apostichopus japonicus : history, biology and aquaculture , 2015 .

[16]  Rodrigo Lopez,et al.  The EMBL-EBI bioinformatics web and programmatic tools framework , 2015, Nucleic Acids Res..

[17]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[18]  Tetsuya Hayashi,et al.  Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads , 2014, Genome research.

[19]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[20]  Ken‐ichi Yamamoto,et al.  Effects of Water Temperature on Ventilation of the Japanese Common Sea Cucumber, Apostichopus japonicus of Different Color Pattern , 2005 .

[21]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[22]  Yun‐wei Dong,et al.  Difference in Thermotolerance Between Green and Red Color Variants of the Japanese Sea Cucumber, Apostichopus japonicus Selenka: Hsp70 and Heat-Hardening Effect , 2010, The Biological Bulletin.

[23]  David Haussler,et al.  Using native and syntenically mapped cDNA alignments to improve de novo gene finding , 2008, Bioinform..

[24]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[25]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[26]  A. Kijima,et al.  Quantitative and Qualitative Evaluation on the Color Variation of the Japanese Sea Cucumber Stichopus japonicus , 2002 .

[27]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[28]  W. Lu,et al.  Transcriptome Sequencing and Characterization for the Sea Cucumber Apostichopus japonicus (Selenka, 1867) , 2012, PloS one.

[29]  泰雄 大島 ナマコにみられる「アオ」と「アカ」の形態および生態的差異について , 1961 .

[30]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[31]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..