Radial symmetry of solutions to anisotropic and weighted diffusion equations with discontinuous nonlinearities

For 1 < p < ∞, we prove radial symmetry for bounded nonnegative solutions of

[1]  Frank Morgan,et al.  The isoperimetric theorem for general integrands. , 1994 .

[2]  Paolo Salani,et al.  Overdetermined anisotropic elliptic problems , 2009 .

[3]  I. Holopainen Riemannian Geometry , 1927, Nature.

[4]  R. Magnanini,et al.  Nearly optimal stability for Serrin’s problem and the Soap Bubble theorem , 2019, Calculus of Variations and Partial Differential Equations.

[5]  G. Tralli,et al.  Isoperimetric cones and minimal solutions of partial overdetermined problems , 2019, Publicacions Matemàtiques.

[6]  Antonio Leaci,et al.  Relaxation of the non-parametric plateau problem with an obstacle , 1988 .

[7]  G. Bellettini,et al.  A notion of total variation depending on a metric with discontinuous coefficients , 1994 .

[8]  William P. Ziemer,et al.  Minimal rearrangements of Sobolev functions. , 1987 .

[9]  Enrico Valdinoci,et al.  A Serrin-type problem with partial knowledge of the domain , 2020, Nonlinear Analysis.

[10]  Irene Fonseca,et al.  A uniqueness proof for the Wulff Theorem , 1991, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  B. Kawohl,et al.  Remarks on an overdetermined boundary value problem , 2008 .

[12]  J. Serra Radial symmetry of solutions to diffusion equations with discontinuous nonlinearities , 2011, 1101.5094.

[13]  James Serrin,et al.  A symmetry problem in potential theory , 1971 .

[14]  Symmetry properties for positive solutions of elliptic equations with mixed boundary conditions , 1989 .

[15]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[16]  G. Crasta,et al.  THE DISTANCE FUNCTION FROM THE BOUNDARY IN A MINKOWSKI SPACE , 2006, math/0612226.

[17]  Gary M. Lieberman,et al.  Boundary regularity for solutions of degenerate elliptic equations , 1988 .

[18]  P. L. Lionst Two geometrical properties of solutions of semilinear problems , 1981 .

[19]  J. Heinonen Lectures on Lipschitz analysis , 2005 .

[20]  J. Taylor,et al.  Crystalline variational problems , 1978 .

[21]  Hans F. Weinberger,et al.  Remark on the preceding paper of Serrin , 1971 .

[22]  G. Talenti A weighted version of a rearrangement inequality , 1997, ANNALI DELL UNIVERSITA DI FERRARA.

[23]  Wulff theorem and best constant in Sobolev inequality , 1992 .

[24]  A. Pratelli,et al.  Sharp quantitative stability for isoperimetric inequalities with homogeneous weights , 2020, 2006.13867.

[25]  Chao Xia,et al.  A Characterization of the Wulff Shape by an Overdetermined Anisotropic PDE , 2011 .

[26]  A. Enciso,et al.  Symmetry for an overdetermined boundary problem in a punctured domain , 2009 .

[27]  Pierre-Louis Lions,et al.  Isoperimetric inequalities for convex cones , 1990 .

[28]  G. Tralli,et al.  Overdetermined problems and constant mean curvature surfaces in cones , 2018, Revista Matemática Iberoamericana.

[29]  C. Bianchini,et al.  Wulff shape characterizations in overdetermined anisotropic elliptic problems , 2017, 1703.07111.

[30]  C. Xia,et al.  A partially overdetermined problem in a half ball , 2018, Calculus of Variations and Partial Differential Equations.

[31]  John L. Lewis,et al.  A symmetry result related to some overdetermined boundary value problems , 1989 .

[32]  Xavier Ros-Oton,et al.  Sharp isoperimetric inequalities via the ABP method , 2013, 1304.1724.

[33]  Guy Bouchitté,et al.  BV functions with respect to a measure and relaxation of metric integral functionals. , 1999 .

[34]  Hongwei Lou,et al.  On singular sets of local solutions to p-Laplace equations , 2008 .

[35]  P. Tolksdorf,et al.  Regularity for a more general class of quasilinear elliptic equations , 1984 .

[36]  R. Magnanini,et al.  On the stability for Alexandrov’s Soap Bubble theorem , 2016, Journal d'Analyse Mathématique.

[37]  V. Maz'ya,et al.  Global Lipschitz Regularity for a Class of Quasilinear Elliptic Equations , 2010 .

[38]  A. Figalli,et al.  A mass transportation approach to quantitative isoperimetric inequalities , 2010 .

[39]  A. Dinghas,et al.  Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen , 1943 .

[40]  L. Evans Measure theory and fine properties of functions , 1992 .

[41]  An overdetermined problem associated to the Finsler Laplacian , 2020, 2010.03042.

[42]  C. Trombetti,et al.  Serrin-Type Overdetermined Problems: an Alternative Proof , 2008 .

[43]  Elena Sartori,et al.  Symmetry in exterior boundary value problems for quasilinear elliptic equations via blow-up and a priori estimates , 1999, Advances in Differential Equations.

[44]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[45]  A. Figalli,et al.  A Sharp Stability Result for the Relative Isoperimetric Inequality Inside Convex Cones , 2012, 1210.3113.

[46]  Marco Degiovanni,et al.  On the regularity of solutions in the Pucci-Serrin identity , 2003 .

[47]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[48]  R. Magnanini,et al.  Serrin's problem and Alexandrov's Soap Bubble Theorem: enhanced stability via integral identities , 2017, Indiana University Mathematics Journal.

[49]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[50]  B. Kawohl,et al.  Overdetermined problems with possibly degenerate ellipticity, a geometric approach , 2006 .

[51]  M. Belloni,et al.  Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators , 2003 .

[52]  F. Maggi Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory , 2012 .

[53]  Antonio Cañete,et al.  Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities , 2013, 1304.1438.

[54]  Giorgio Poggesi Radial symmetry for p-harmonic functions in exterior and punctured domains , 2018, 1801.07105.

[55]  A. Roncoroni,et al.  Serrin’s type overdetermined problems in convex cones , 2018, Calculus of Variations and Partial Differential Equations.

[56]  S. Kesavan,et al.  Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequalities , 1994 .

[57]  E. Valdinoci,et al.  Monotonicity formulae and classification results for singular, degenerate, anisotropic PDEs☆ , 2014, 1412.6561.