TweeTime : A Minimally Supervised Method for Recognizing and Normalizing Time Expressions in Twitter

We describe TweeTIME, a temporal tagger for recognizing and normalizing time expressions in Twitter. Most previous work in social media analysis has to rely on temporal resolvers that are designed for well-edited text, and therefore suffer from the reduced performance due to domain mismatch. We present a minimally supervised method that learns from large quantities of unlabeled data and requires no hand-engineered rules or hand-annotated training corpora. TweeTIME achieves 0.68 F1 score on the end-to-end task of resolving date expressions, outperforming a broad range of state-of-the-art systems.

[1]  Inderjeet Mani,et al.  Robust Temporal Processing of News , 2000, ACL.

[2]  Nate Chambers NavyTime: Event and Time Ordering from Raw Text , 2013, SemEval@NAACL-HLT.

[3]  Dirk Hovy,et al.  Adapting taggers to Twitter with not-so-distant supervision , 2014, COLING.

[4]  Luke S. Zettlemoyer,et al.  Context-dependent Semantic Parsing for Time Expressions , 2014, ACL.

[5]  Dan Roth,et al.  Joint Inference for Event Timeline Construction , 2012, EMNLP.

[6]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[7]  Le Zhao,et al.  Filling Knowledge Base Gaps for Distant Supervision of Relation Extraction , 2013, ACL.

[8]  Byron C. Wallace,et al.  Extracting PICO Sentences from Clinical Trial Reports using Supervised Distant Supervision , 2016, J. Mach. Learn. Res..

[9]  Mirella Lapata,et al.  2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies , 2012 .

[10]  Tom M. Mitchell,et al.  Weakly Supervised Extraction of Computer Security Events from Twitter , 2015, WWW.

[11]  James Pustejovsky,et al.  SemEval-2016 Task 12: Clinical TempEval , 2016, NAACL 2016.

[12]  Oren Etzioni,et al.  Open domain event extraction from twitter , 2012, KDD.

[13]  Michael Gertz,et al.  Multilingual and cross-domain temporal tagging , 2012, Language Resources and Evaluation.

[14]  Christopher D. Manning,et al.  Combining Distant and Partial Supervision for Relation Extraction , 2014, EMNLP.

[15]  James F. Allen,et al.  TRIPS and TRIOS System for TempEval-2: Extracting Temporal Information from Text , 2010, *SEMEVAL.

[16]  Steven Bethard,et al.  A Synchronous Context Free Grammar for Time Normalization , 2013, EMNLP.

[17]  Luke S. Zettlemoyer,et al.  Knowledge-Based Weak Supervision for Information Extraction of Overlapping Relations , 2011, ACL.

[18]  Stuart Adam Battersby,et al.  Experimenting with Distant Supervision for Emotion Classification , 2012, EACL.

[19]  Oren Etzioni,et al.  Named Entity Recognition in Tweets: An Experimental Study , 2011, EMNLP.

[20]  Angel X. Chang,et al.  SUTime: A library for recognizing and normalizing time expressions , 2012, LREC.

[21]  Chris Callison-Burch,et al.  Extracting Lexically Divergent Paraphrases from Twitter , 2014, TACL.

[22]  Daniel Jurafsky,et al.  Parsing Time: Learning to Interpret Time Expressions , 2012, NAACL.

[23]  Nathanael Chambers,et al.  Learning for Microblogs with Distant Supervision: Political Forecasting with Twitter , 2012, EACL.

[24]  Gabor Angeli,et al.  Language-Independent Discriminative Parsing of Temporal Expressions , 2013, ACL.

[25]  Daniel Jurafsky,et al.  Distant supervision for relation extraction without labeled data , 2009, ACL.

[26]  Avare Stewart,et al.  Supporting temporal analytics for health-related events in microblogs , 2012, CIKM.

[27]  Andrew McCallum,et al.  Modeling Relations and Their Mentions without Labeled Text , 2010, ECML/PKDD.

[28]  Michael Gertz,et al.  On the value of temporal information in information retrieval , 2007, SIGF.

[29]  Leon Derczynski,et al.  Temporal Signals Help Label Temporal Relations , 2013, ACL.

[30]  Steven Bethard,et al.  ClearTK-TimeML: A minimalist approach to TempEval 2013 , 2013, *SEMEVAL.

[31]  James Pustejovsky,et al.  SemEval-2017 Task 12: Clinical TempEval , 2017, *SEMEVAL.

[32]  Michael Gertz,et al.  A Baseline Temporal Tagger for all Languages , 2015, EMNLP.

[33]  Marie-Francine Moens,et al.  KUL: Recognition and Normalization of Temporal Expressions , 2010, SemEval@ACL.

[34]  Ramesh Nallapati,et al.  Multi-instance Multi-label Learning for Relation Extraction , 2012, EMNLP.

[35]  Michael Gertz,et al.  Temporal Tagging on Different Domains: Challenges, Strategies, and Gold Standards , 2012, LREC.

[36]  Yue Zhang,et al.  Expectation-Regulated Neural Model for Event Mention Extraction , 2016, NAACL.

[37]  Maarten Sap,et al.  Extracting Human Temporal Orientation from Facebook Language , 2015, NAACL.

[38]  Goran Nenadic,et al.  ManTIME: Temporal expression identification and normalization in the TempEval-3 challenge , 2013, SemEval@NAACL-HLT.

[39]  Razvan C. Bunescu,et al.  Learning to Extract Relations from the Web using Minimal Supervision , 2007, ACL.

[40]  Heng Ji,et al.  Overview of the TAC 2010 Knowledge Base Population Track , 2010 .

[41]  Mark Craven,et al.  Constructing Biological Knowledge Bases by Extracting Information from Text Sources , 1999, ISMB.

[42]  James Pustejovsky,et al.  SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations , 2013, *SEMEVAL.

[43]  Daniel S. Weld,et al.  Temporal Information Extraction , 2010, AAAI.

[44]  Oren Etzioni,et al.  Modeling Missing Data in Distant Supervision for Information Extraction , 2013, TACL.

[45]  Alessandro Moschitti,et al.  End-to-End Relation Extraction Using Distant Supervision from External Semantic Repositories , 2011, ACL.