FILTER FACTOR ANALYSIS OF AN ITERATIVE MULTILEVEL REGULARIZING METHOD

Recent results have shown that iterative methods of multigrid type are very precise and efcient for regularizing purposes: the reconstruction quality is of the same level or slightly better than that related to most effective regularizing procedures such as Landweber or conjugate gradients for normal equations, but the associated computational cost is highly reduced. Here we analyze the lter features of one of these multigrid techniques in order to provide a theoretical motivation of the excellent regularizing characteristics experimentally observed in the discussed methods.

[1]  Wolfgang Osten,et al.  Introduction to Inverse Problems in Imaging , 1999 .

[2]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[3]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[4]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[5]  S. Serra-Capizzano,et al.  A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2003, SIAM J. Sci. Comput..

[6]  Jianhong Shen,et al.  Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..

[7]  James G. Nagy,et al.  Iterative Methods for Image Deblurring: A Matlab Object-Oriented Approach , 2004, Numerical Algorithms.

[8]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[9]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[10]  Stefano Serra Capizzano,et al.  Numerische Mathematik Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002 .

[11]  Wolfgang Joppich,et al.  Practical Fourier Analysis for Multigrid Methods , 2004 .

[12]  Stefano Serra Capizzano,et al.  On the Regularizing Power of Multigrid-type Algorithms , 2005, SIAM J. Sci. Comput..

[13]  Marco Donatelli,et al.  A V-cycle Multigrid for multilevel matrix algebras: proof of optimality , 2007, Numerische Mathematik.

[14]  Stefano Serra Capizzano,et al.  Multigrid Methods for Multilevel Circulant Matrices , 2004, SIAM J. Sci. Comput..

[15]  S. Serra-Capizzano,et al.  Improved image deblurring with anti-reflective boundary conditions and re-blurring , 2006 .

[16]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .