Parallel tempering Monte Carlo simulations of the water heptamer anion

[1]  K. Jordan,et al.  Comparison of models with distributed polarizable sites for describing water clusters , 2007 .

[2]  Mark A. Johnson,et al.  Vibrational spectroscopy of hydrated electron clusters (H2O)(-)(15-50) via infrared multiple photon dissociation. , 2007, The Journal of chemical physics.

[3]  J. Roscioli,et al.  Isomer-specific spectroscopy of the (H2O)8- cluster anion in the intramolecular bending region by selective photodepletion of the more weakly electron binding species (isomer II). , 2007, The Journal of chemical physics.

[4]  S. D. Gardner,et al.  Low-lying isomers and finite temperature behavior of (H2O)6 -. , 2006, The Journal of chemical physics.

[5]  J. Roscioli,et al.  Infrared spectroscopy of water cluster anions, (H2O)n=3-24-)in the HOH bending region: persistence of the double H-bond acceptor (AA) water molecule in the excess electron binding site of the class I isomers. , 2006, The journal of physical chemistry. A.

[6]  K. Jordan,et al.  Electron binding motifs of (H2O)n- clusters. , 2006, Journal of the American Chemical Society.

[7]  Mark A. Johnson,et al.  Vibrational predissociation spectroscopy of the (H2O)(6-21)- clusters in the OH stretching region: evolution of the excess electron-binding signature into the intermediate cluster size regime. , 2005, The Journal of chemical physics.

[8]  K. Jordan,et al.  Quantum Drude oscillator model for describing the interaction of excess electrons with water clusters: an application to (H2O)13(-). , 2005, The journal of physical chemistry. A.

[9]  David J. Earl,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[10]  J. Roscioli,et al.  Identification of two distinct electron binding motifs in the anionic water clusters: a vibrational spectroscopic study of the (H2O)6- isomers. , 2005, The journal of physical chemistry. A.

[11]  Han Myoung Lee,et al.  Origin of the magic numbers of water clusters with an excess electron. , 2005, The Journal of chemical physics.

[12]  Marvin Johnson,et al.  Preparation and photoelectron spectrum of the ‘missing’ (H2O)4- cluster , 2004 .

[13]  Mark A. Johnson,et al.  How Do Small Water Clusters Bind an Excess Electron? , 2004, Science.

[14]  K. Jordan,et al.  Parallel-tempering Monte Carlo simulations of the finite temperature behavior of (H2O)6− , 2003 .

[15]  Kwang S. Kim,et al.  Water heptamer with an excess electron: Ab initio study , 2003 .

[16]  Feng Wang,et al.  Application of a Drude model to the binding of excess electrons to water clusters , 2002 .

[17]  Marvin Johnson,et al.  Linking the photoelectron and infrared spectroscopies of the (H2O)6− isomers , 2002 .

[18]  Sotiris S. Xantheas,et al.  Development of transferable interaction models for water. III. Reparametrization of an all-atom polarizable rigid model (TTM2–R) from first principles , 2002 .

[19]  K. Jordan,et al.  A Drude-model approach to dispersion interactions in dipole-bound anions , 2001 .

[20]  D. L. Freeman,et al.  Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble , 2000, physics/0003068.

[21]  Marvin Johnson,et al.  Photoelectron spectroscopy of the `missing' hydrated electron clusters (H2O)−n, n=3, 5, 8 and 9: Isomers and continuity with the dominant clusters n=6, 7 and ⩾11 , 1998 .

[22]  Marvin Johnson,et al.  Vibrational predissociation spectroscopy of the (H2O)6−⋅Arn, n⩾6, clusters , 1998 .

[23]  Simons,et al.  Contribution of electron correlation to the stability of dipole-bound anionic states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[24]  C. E. Dykstra,et al.  Model studies of six-membered water clusters , 1992 .

[25]  H. W. Sarkas,et al.  Photoelectron spectroscopy of hydrated electron cluster anions, (H2O)−n=2–69 , 1990 .

[26]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[27]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[28]  D. Worsnop,et al.  Experimental observation of the negatively charged water dimer and other small (H2O)−n clusters , 1984 .

[29]  D. Worsnop,et al.  Mass Spectra of Negatively Charged Water and Ammonia Clusters , 1984 .

[30]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[31]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[32]  Marvin Johnson,et al.  The Vibrational Spectrum of the Neutral (H2O)6 Precursor to the “Magic” (H2O)6- Cluster Anion by Argon-Mediated, Population-Modulated Electron Attachment Spectroscopy , 2004 .

[33]  J. Simons,et al.  ENERGIES OF DIPOLE-BOUND ANIONIC STATES , 1997 .

[34]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..