Parameterization in Finite Precision

Abstract. Certain classes of algebraic curves and surfaces admit both parametric and implicit representations. Such dual forms are highly useful in geometric modeling since they combine the strengths of the two representations. We consider the problem of computing the rational parameterization of an implicit curve or surface in a finite precision domain. Known algorithms for this problem are based on classical algebraic geometry, and assume exact arithmetic involving algebraic numbers. In this work we investigate the behavior of published parameterization algorithms in a finite precision domain and derive succinct algebraic and geometric error characterizations. We then indicate numerically robust methods for parameterizing curves and surfaces which yield no error in extended finite precision arithmetic and, alternatively, minimize the output error under fixed finite precision calculations.

[1]  Chandrajit L. Bajaj,et al.  Automatic parameterization of rational curves and surfaces III: Algebraic plane curves , 1988, Comput. Aided Geom. Des..

[2]  S. Abhyankar,et al.  Automatic parameterization of rational curves and surfaces 1: conics and conicoids , 1987 .

[3]  T. Sederberg,et al.  Parametrization of cubic algebraic surfaces , 1987 .

[4]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[5]  A. C. Burdette THE CONIC SECTIONS , 1971 .

[6]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[7]  C. Hoffmann Algebraic curves , 1988 .

[8]  C. Bajaj,et al.  Automatic parametrization of rational curves and surfaces II: cubics and cubicoids , 1987 .

[9]  Journal of the Association for Computing Machinery , 1961, Nature.

[10]  Robert J. Holt,et al.  Rational parametrizations of nonsingular real cubic surfaces , 1998, TOGS.

[11]  Chandrajit L. Bajaj,et al.  Automatic parameterization of rational curves and surfaces IV: algebraic space curves , 1988, TOGS.

[12]  Rüdiger Loos Computing Rational Zeros of Integral Polynomials by p-adic Expansion , 1983, SIAM J. Comput..

[13]  Rida T. Farouki,et al.  On the numerical condition of algebraic curves and surfaces 1. Implicit equations , 1988, Comput. Aided Geom. Des..

[14]  Chanderjit L. Bajaj Rational hypersurface display , 1990, I3D '90.

[15]  Carla Limongelli,et al.  Design and Implementation of Symbolic Computation Systems , 1996, Lecture Notes in Computer Science.

[16]  F. Bookstein Fitting conic sections to scattered data , 1979 .

[17]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[18]  L. Mordell,et al.  Diophantine equations , 1969 .

[19]  Chandrajit L. Bajaj,et al.  The GANITH algebraic geometry toolkit , 1990, DISCO.

[20]  D. M. Y. Sommerville Analytical geometry of three dimensions , 1934 .

[21]  J. Todd Methods of Algebraic Geometry , 1948, Nature.