Complete chloroplast genome sequence of Betula platyphylla: gene organization, RNA editing, and comparative and phylogenetic analyses

[1]  R. Bock,et al.  Chloroplast Translation: Structural and Functional Organization, Operational Control, and Regulation[OPEN] , 2018, Plant Cell.

[2]  R. Bock,et al.  Shine-Dalgarno Sequences Play an Essential Role in the Translation of Plastid mRNAs in Tobacco , 2017, Plant Cell.

[3]  Xuewen Wang,et al.  Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp. formosana , 2017, Botanical Studies.

[4]  Xian Li,et al.  The Complete Chloroplast Genome of Chinese Bayberry (Morella rubra, Myricaceae): Implications for Understanding the Evolution of Fagales , 2017, Front. Plant Sci..

[5]  Petri Auvinen,et al.  Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch , 2017, Nature Genetics.

[6]  D. Haak,et al.  Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial genomes from PacBio DNA sequencing data , 2017, BMC Genomics.

[7]  Meng Wang,et al.  Identification and Analysis of RNA Editing Sites in the Chloroplast Transcripts of Aegilops tauschii L. , 2016, Genes.

[8]  M. Sugita,et al.  RNA Editing and Its Molecular Mechanism in Plant Organelles , 2016, Genes.

[9]  G. Xiao,et al.  Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis , 2016, BMC Plant Biology.

[10]  En-Hua Xia,et al.  Full transcription of the chloroplast genome in photosynthetic eukaryotes , 2016, Scientific Reports.

[11]  S. Strickler,et al.  ChloroSeq, an Optimized Chloroplast RNA-Seq Bioinformatic Pipeline, Reveals Remodeling of the Organellar Transcriptome Under Heat Stress , 2016, G3: Genes, Genomes, Genetics.

[12]  H. Daniell,et al.  Chloroplast genomes: diversity, evolution, and applications in genetic engineering , 2016, Genome Biology.

[13]  Felix Grewe,et al.  Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns – a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles , 2016, BMC Evolutionary Biology.

[14]  En-Hua Xia,et al.  CandiSSR: An Efficient Pipeline used for Identifying Candidate Polymorphic SSRs Based on Multiple Assembled Sequences , 2016, Front. Plant Sci..

[15]  A. Cournac,et al.  The 3D folding of metazoan genomes correlates with the association of similar repetitive elements , 2015, Nucleic acids research.

[16]  Joachim Messing,et al.  RNA Editing in Chloroplasts of Spirodela polyrhiza, an Aquatic Monocotelydonous Species , 2015, PloS one.

[17]  B. Weisshaar,et al.  SMRT sequencing only de novo assembly of the sugar beet (Beta vulgaris) chloroplast genome , 2015, BMC Bioinformatics.

[18]  Sang-Min Chung,et al.  One size does not fit all: the risk of using amplicon size of chloroplast SSR marker for genetic relationship studies , 2015, Plant Cell Reports.

[19]  Chuanping Yang,et al.  Analysis of three types of triterpenoids in tetraploid white birches (Betula platyphylla Suk.) and selection of plus trees , 2015, Journal of Forestry Research.

[20]  Giulia Friso,et al.  A Zinc Finger Motif-Containing Protein Is Essential for Chloroplast RNA Editing , 2015, PLoS genetics.

[21]  Gregory L. Wheeler,et al.  A review of the prevalence, utility, and caveats of using chloroplast simple sequence repeats for studies of plant biology , 2014, Applications in plant sciences.

[22]  Z. Quan,et al.  A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots , 2014, BMC Plant Biology.

[23]  Riccardo Velasco,et al.  An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome , 2013, BMC Genomics.

[24]  S. Bentolila,et al.  Comprehensive High-Resolution Analysis of the Role of an Arabidopsis Gene Family in RNA Editing , 2013, PLoS genetics.

[25]  Marc Lohse,et al.  OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets , 2013, Nucleic Acids Res..

[26]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[27]  Alice Barkan,et al.  An RNA recognition motif-containing protein is required for plastid RNA editing in Arabidopsis and maize , 2013, Proceedings of the National Academy of Sciences.

[28]  Xiaojun Guan,et al.  CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences , 2012, BMC Genomics.

[29]  Giulia Friso,et al.  RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing , 2012, Proceedings of the National Academy of Sciences.

[30]  S. Fan,et al.  Identification of RNA editing sites in cotton (Gossypium hirsutum) chloroplasts and editing events that affect secondary and three-dimensional protein structures. , 2012, Genetics and molecular research : GMR.

[31]  Chuanping Yang,et al.  Building an mRNA transcriptome from the shoots of Betula platyphylla by using Solexa technology , 2012, Tree Genetics & Genomes.

[32]  Axel Brennicke,et al.  Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants , 2012, Proceedings of the National Academy of Sciences.

[33]  Mukesh Jain,et al.  NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data , 2012, PloS one.

[34]  W. Pirovano,et al.  Scaffolding pre-assembled contigs using SSPACE , 2011, Bioinform..

[35]  Ching-Ping Lin,et al.  Comparative Chloroplast Genomics Reveals the Evolution of Pinaceae Genera and Subfamilies , 2010, Genome biology and evolution.

[36]  Ian Small,et al.  Plant RNA editing , 2010, RNA biology.

[37]  B. Green,et al.  Substitutional editing of Heterocapsa triquetra chloroplast transcripts and a folding model for its divergent chloroplast 16S rRNA. , 2009, Gene.

[38]  E. Bitocchi,et al.  Development and use of chloroplast microsatellites in Phaseolus spp. and other legumes. , 2009, Plant biology.

[39]  R. Peakall,et al.  A new set of universal de novo sequencing primers for extensive coverage of noncoding chloroplast DNA: new opportunities for phylogenetic studies and cpSSR discovery , 2009, Molecular ecology resources.

[40]  David Hernández,et al.  De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. , 2008, Genome research.

[41]  V. Ravi,et al.  An update on chloroplast genomes , 2008, Plant Systematics and Evolution.

[42]  M. Sugiura,et al.  Translation of psbC mRNAs starts from the downstream GUG, not the upstream AUG, and requires the extended Shine-Dalgarno sequence in tobacco chloroplasts. , 2007, Plant & cell physiology.

[43]  P. Krasutsky Birch bark research and development. , 2006, Natural product reports.

[44]  Uwe G Maier,et al.  The evolution of chloroplast RNA editing. , 2006, Molecular biology and evolution.

[45]  Amit Dhingra,et al.  Rapid and accurate pyrosequencing of angiosperm plastid genomes , 2006, BMC Plant Biology.

[46]  D. Morse,et al.  Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate Lingulodinium , 2006, Nucleic acids research.

[47]  Jeffrey P. Mower,et al.  The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. , 2006, Molecular biology and evolution.

[48]  M. C. de Vicente,et al.  A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. , 2005, Tree physiology.

[49]  J. Shapiro,et al.  Why repetitive DNA is essential to genome function , 2005, Biological reviews of the Cambridge Philosophical Society.

[50]  Qingpo Liu,et al.  Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species , 2005, Journal of Genetics.

[51]  R. Bock,et al.  Surprising features of plastid ndhD transcripts: addition of non-encoded nucleotides and polysome association of mRNAs with an unedited start codon. , 2004, Nucleic acids research.

[52]  Koichi Yoshinaga,et al.  RNA editing in hornwort chloroplasts makes more than half the genes functional. , 2003, Nucleic acids research.

[53]  Bernard R. Baum,et al.  Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components , 1997, Plant Molecular Biology Reporter.

[54]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[55]  W. Powell,et al.  Chloroplast DNA variability in wild and cultivated rice (Oryza spp.) revealed by polymorphic chloroplast simple sequence repeats. , 1997, Genome.

[56]  F. Takaiwa,et al.  The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression , 1986, The EMBO journal.

[57]  T. Kohchi,et al.  Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA , 1986, Nature.

[58]  Kathryn Larson-Johnson Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. , 2016, The New phytologist.

[59]  M. Gray The Evolutionary Origins of Plant Organelles , 2004 .

[60]  G. McFadden Chloroplast origin and integration. , 2001, Plant physiology.