Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement

[1]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[2]  E. Rank,et al.  High order finite elements for shells , 2005 .

[3]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[4]  Tayfun E. Tezduyar,et al.  Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements , 2004 .

[5]  Arif Masud,et al.  A multiscale/stabilized finite element method for the advection–diffusion equation , 2004 .

[6]  Ekkehard Ramm,et al.  A three-level finite element method for the instationary incompressible Navier?Stokes equations , 2004 .

[7]  P. Hansbo,et al.  Edge stabilization for Galerkin approximations of convection?diffusion?reaction problems , 2004 .

[8]  Isaac Harari,et al.  Stability of semidiscrete formulations for parabolic problems at small time steps , 2004 .

[9]  Alvaro L. G. A. Coutinho,et al.  Stabilized methods and post-processing techniques for miscible displacements , 2004 .

[10]  M. Bischoff,et al.  Improving stability and accuracy of Reissner–Mindlin plate finite elements via algebraic subgrid scale stabilization , 2004 .

[11]  Charbel Farhat,et al.  A Variational Multiscale Method for the Large Eddy Simulation of Compressible Turbulent Flows on Unstructured Meshes - Application to vortex shedding , 2004 .

[12]  G. Hauke,et al.  Computing reactive flows with a field Monte Carlo formulation and multi-scale methods , 2004 .

[13]  Ramon Codina,et al.  Approximation of the incompressible Navier-Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes , 2004 .

[14]  Tayfun E. Tezduyar,et al.  Enhanced-discretization space time technique (EDSTT) , 2004 .

[15]  Pavel B. Bochev,et al.  On inf-sup stabilized finite element methods for transient problems , 2004 .

[16]  Gang Li,et al.  Positivity conditions in meshless collocation methods , 2004 .

[17]  Wing Kam Liu,et al.  A comparison of two formulations to blend finite elements and mesh-free methods , 2004 .

[18]  Zongmin Wu,et al.  Dynamically knots setting in meshless method for solving time dependent propagations equation , 2004 .

[19]  Wing Kam Liu,et al.  Extended immersed boundary method using FEM and RKPM , 2004 .

[20]  Piotr Breitkopf,et al.  Integration constraint in diffuse element method , 2004 .

[21]  Sivakumar Kulasegaram,et al.  Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems , 2004 .

[22]  Dongdong Wang,et al.  A variational formulation and a double-grid method for meso-scale modeling of stressed grain growth in polycrystalline materials , 2004 .

[23]  S. B. Dong,et al.  An extended meshfree method for boundary value problems , 2004 .

[24]  Dongdong Wang,et al.  Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation , 2004 .

[25]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[26]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[27]  Antonio Huerta,et al.  Pseudo-divergence-free element free Galerkin method for incompressible fluid flow , 2004 .

[28]  Deborah Sulsky,et al.  Implicit dynamics in the material-point method , 2004 .

[29]  Shaofan Li,et al.  Reproducing kernel element method. Part IV: Globally compatible Cn (n ≥ 1) triangular hierarchy , 2004 .

[30]  Jian Cao,et al.  Reproducing kernel element method Part III: Generalized enrichment and applications , 2004 .

[31]  Weimin Han,et al.  Reproducing kernel element method. Part I: Theoretical formulation , 2004 .

[32]  G. Fasshauer Toward approximate moving least squares approximation with irregularly spaced centers , 2004 .

[33]  Weimin Han,et al.  Reproducing kernel element method Part II: Globally conforming Im/Cn hierarchies , 2004 .

[34]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[35]  Wolfgang A. Wall,et al.  Parallel multilevel solution of nonlinear shell structures , 2005 .

[36]  P. Bar-Yoseph,et al.  Mechanically based models: Adaptive refinement for B‐spline finite element , 2003 .

[37]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[38]  P. Wriggers,et al.  Computational Contact Mechanics , 2002 .

[39]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[40]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[41]  Juan J. Alonso,et al.  Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations , 2002 .

[42]  Javier Jiménez,et al.  A critical evaluation of the resolution properties of B-Spline and compact finite difference methods , 2001 .

[43]  P. Moin Fundamentals of Engineering Numerical Analysis , 2001 .

[44]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[45]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[46]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[47]  Eugenio Oñate,et al.  Rotation-free triangular plate and shell elements , 2000 .

[48]  Christian Rohde,et al.  An Introduction to Recent Developments in Theory and Numerics for Conservation Laws: Proceedings of the International School on Theory and Numerics for Conservation Laws, Freiburg/Littenweiler, Germany, October 20-24, 1997 , 1999, Theory and Numerics for Conservation Laws.

[49]  Robert J. Holt,et al.  Energy formulations of A-splines , 1999, Comput. Aided Geom. Des..

[50]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[51]  R. Moser,et al.  Two-Dimensional Mesh Embedding for B-spline Methods , 1998 .

[52]  R. Maccormack,et al.  Simplified numerical methods for gasdynamic systems on triangulated domains , 1998 .

[53]  Hong Qin,et al.  Triangular NURBS and their dynamic generalizations , 1997, Comput. Aided Geom. Des..

[54]  Parviz Moin,et al.  B-Spline Method and Zonal Grids for Simulations of Complex Turbulent Flows , 1997 .

[55]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[56]  Timothy J. Barth,et al.  Numerical Methods for Gasdynamic Systems on Unstructured Meshes , 1997, Theory and Numerics for Conservation Laws.

[57]  Parviz Moin,et al.  Zonal Embedded Grids for Numerical Simulations of Wall-Bounded Turbulent Flows , 1996 .

[58]  Hong Qin,et al.  D-NURBS: A Physics-Based Framework for Geometric Design , 1996, IEEE Trans. Vis. Comput. Graph..

[59]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[60]  Jindong Chen,et al.  Modeling with cubic A-patches , 1995, TOGS.

[61]  Miguel Cervera,et al.  Derivation of thin plate bending elements with one degree of freedom per node , 1993 .

[62]  C. R. Calladine,et al.  A simple class of finite elements for plate and shell problems. II: An element for thin shells, with only translational degrees of freedom , 1992 .

[63]  C. R. Calladine,et al.  A simple class of finite elements for plate and shell problems. I - Elements for beams and thin flat plates. II - An element for thin shells, with only translational degrees of freedom , 1992 .

[64]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[65]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[66]  Chandrajit L. Bajaj,et al.  Automatic parameterization of rational curves and surfaces IV: algebraic space curves , 1988, TOGS.

[67]  Thomas J. R. Hughes,et al.  A mixed finite element formulation for Reissner—Mindlin plate theory: uniform convergence of all higher-order spaces , 1988 .

[68]  R HughesTJ,et al.  ライスナー,ミンドリン平板理論に関する混合有限要素定式化 全高次空間の一様収束 , 1988 .

[69]  C. Bajaj,et al.  Automatic parametrization of rational curves and surfaces II: cubics and cubicoids , 1987 .

[70]  S. Abhyankar,et al.  Automatic parameterization of rational curves and surfaces 1: conics and conicoids , 1987 .

[71]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[72]  K. Höllig Finite element methods with B-splines , 1987 .

[73]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[74]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[75]  P. Gould Introduction to Linear Elasticity , 1983 .

[76]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[77]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[78]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[79]  Magdalena Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2022 .