Ultimate limits of biaxial tensile strain and n-type doping for realizing an efficient low-threshold Ge laser

We theoretically investigate the methodology involved in the minimization of the threshold of a Ge-on-Si laser and maximization of the slope efficiency in the presence of both biaxial tensile strain and n-type doping. Our findings suggest that there exist ultimate limits beyond which no further benefit can be realized through increased tensile strain or n-type doping. In this study, we quantify these limits, showing that the optimal design for minimizing threshold involves approximately 3.7% biaxial tensile strain and 2 × 1018 cm−3 n-type doping, whereas the optimal design for maximum slope efficiency involves approximately 2.3% biaxial tensile strain with 1 × 1019 cm−3 n-type doping. Increasing the strain and doping beyond these limits will degrade the threshold and slope efficiency, respectively.

[1]  Isabelle Sagnes,et al.  All‐Around SiN Stressor for High and Homogeneous Tensile Strain in Germanium Microdisk Cavities , 2015 .

[2]  Krishna C. Saraswat,et al.  Roadmap to an Efficient Germanium-on-Silicon Laser: Strain vs. n-Type Doping , 2012, IEEE Photonics Journal.

[3]  Erich Kasper,et al.  Electrically pumped lasing from Ge Fabry-Perot resonators on Si. , 2015, Optics express.

[4]  Jurgen Michel,et al.  Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. , 2007, Optics express.

[5]  Yasuhiko Ishikawa,et al.  Germanium for silicon photonics , 2010 .

[6]  K. Saraswat,et al.  High n-Type Antimony Dopant Activation in Germanium Using Laser Annealing for $\hbox{n}^{+}/\hbox{p}$ Junction Diode , 2011, IEEE Electron Device Letters.

[7]  K. Saraswat,et al.  Strained germanium thin film membrane on silicon substrate for optoelectronics. , 2011, Optics express.

[8]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[9]  G. Assanto,et al.  Low Dark-Current Germanium-on-Silicon Near-Infrared Detectors , 2007, IEEE Photonics Technology Letters.

[10]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[11]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[12]  Grégoire Beaudoin,et al.  Recent advances in germanium emission [Invited] , 2013 .

[13]  W. Chow Model for direct-transition gain in a Ge-on-Si laser , 2012 .

[14]  S. Koester,et al.  Germanium-on-SOI Infrared Detectors for Integrated Photonic Applications , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[16]  Takao Yonehara,et al.  High-efficiency metal-semiconductor-metal photodetectors on heteroepitaxially grown Ge on Si. , 2006, Optics letters.

[17]  Grégoire Beaudoin,et al.  Recent advances in germanium emission , 2013 .

[18]  Donguk Nam,et al.  Electroluminescence from Strained Ge membranes and Implications for an Efficient Si-Compatible Laser , 2012 .

[19]  J. Bowers,et al.  Hybrid Silicon Photonic Integrated Circuit Technology , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  X. Sun Germanium-on-Silicon for Integrated Silicon Photonics , 2012 .

[21]  C. Merckling,et al.  Germanium for advanced CMOS anno 2009: a SWOT analysis , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[22]  G. Chang,et al.  Optical gain of germanium infrared lasers on different crystal orientations , 2013 .

[23]  Donguk Nam,et al.  Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics. , 2015, Optics express.

[24]  T. Boykin,et al.  Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory , 2002 .

[25]  Gianlorenzo Masini,et al.  High performance germanium-on-silicon detectors for optical communications , 2002 .

[26]  P. Kapur,et al.  Performance Comparisons Between Carbon Nanotubes, Optical, and Cu for Future High-Performance On-Chip Interconnect Applications , 2007, IEEE Transactions on Electron Devices.

[27]  G. Pizzi,et al.  Tight-binding calculation of optical gain in tensile strained [001]-Ge/SiGe quantum wells , 2010, Nanotechnology.

[28]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[29]  M. Lee,et al.  Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors , 2005 .

[30]  Gerhard Klimeck,et al.  Brillouin-zone Unfolding of Perfect Supercells Having Nonequivalent Primitive Cells Illustrated with a Si/Ge Tight-Binding parameterization , 2007 .

[31]  R L Byer,et al.  Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers. , 1997, Applied optics.

[32]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[33]  David A B Miller,et al.  Optical modulator on silicon employing germanium quantum wells. , 2007, Optics express.

[34]  G. Fishman,et al.  Band structure and optical gain of tensile-strained germanium based on a 30 band k⋅p formalism , 2010 .

[35]  J. Bowers,et al.  III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects , 2010 .

[36]  Optical Gain and Co-Stimulated Emissions of Photons and Phonons in Indirect Bandgap Semiconductors , 2006 .

[37]  Philippe P. Absil,et al.  50GHz Ge waveguide electro-absorption modulator integrated in a 220nm SOI photonics platform , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[38]  S. Chuang,et al.  Theory for n-type doped, tensile-strained Ge-Si(x)Ge(y)Sn1-x-y quantum-well lasers at telecom wavelength. , 2009, Optics express.

[39]  Mohamed Fadhali Advanced Photonic Sciences , 2012 .

[40]  C. O. Chui,et al.  Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality , 2004 .

[41]  Gianlorenzo Masini,et al.  Ge-on-Si approaches to the detection of near-infrared light , 1999 .