Role of Photoexcitation and Field Ionization in the Measurement of Accurate Oxide Stoichiometry by Laser-Assisted Atom Probe Tomography.

The addition of pulsed lasers to atom probe tomography (APT) extends its high spatial and mass resolution capability to nonconducting materials, such as oxides. For a prototypical metal oxide, MgO, the measured stoichiometry depends strongly on the laser pulse energy and applied voltage. Very low laser energies (0.02 pJ) and high electric fields yield optimal stoichiometric accuracy. Correlated APT and aberration-corrected transmission electron microscopy (TEM) are used to establish the high density of corner and terrace sites on MgO sample surfaces before and after APT. For MgO, long-lifetime photoexcited holes localized at oxygen corner sites can assist in the creation of oxygen neutrals that may spontaneously desorb either as atomic O or as molecular O2. The observed trends are best explained by the relative field-dependent ionization of photodesorbed O or O2 neutrals. These results emphasize the importance of considering electronic excitations in APT analysis of oxide materials.

[1]  J. D. Olson,et al.  Optimized Laser Thermal Pulsing of Atom Probe Tomography: LEAP 4000X™ , 2010 .

[2]  B. Arey,et al.  Three-dimensional chemical imaging of embedded nanoparticles using atom probe tomography , 2012, Nanotechnology.

[3]  D. Kingham The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states , 1982 .

[4]  D. Goodman,et al.  The role of F-centers in catalysis by Au supported on MgO. , 2005, Journal of the American Chemical Society.

[5]  L. Lauhon,et al.  Three-dimensional nanoscale composition mapping of semiconductor nanowires. , 2006, Nano letters.

[6]  W. Hess,et al.  Probing electron transfer dynamics at MgO surfaces by Mg-atom desorption. , 2006, Journal of Physical Chemistry B.

[7]  A. Shluger,et al.  Electronic properties of structural defects at the MgO (001) surface , 2002 .

[8]  V. Choudhary,et al.  Epoxidation of styrene by anhydrous t-butyl hydroperoxide over reusable gold supported on MgO and other alkaline earth oxides , 2004 .

[9]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[10]  D. Seidman,et al.  An Atom-Probe Tomography Primer , 2009 .

[11]  K. Stiller,et al.  Analysis of Bulk Dielectrics with Atom Probe Tomography , 2008, Microscopy and Microanalysis.

[12]  G. L. Kellog Pulsed-laser atom probe mass spectroscopy , 1987 .

[13]  G. Duscher,et al.  Atomic Resolution Imaging of Au Nanocluster Dispersed in TiO2, SrTiO3, and MgO , 2005 .

[14]  K. M. Beck,et al.  Energy and site selectivity in O-atom photodesorption from nanostructured MgO , 2008 .

[15]  Itaru Honma,et al.  Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. , 2009, Nano letters.

[16]  J. Bassat,et al.  Investigation of O-18 enriched hematite (α-Fe2O3) by laser assisted atom probe tomography , 2013 .

[17]  B. Mazumder,et al.  Field evaporation mechanism of bulk oxides under ultra fast laser illumination , 2011 .

[18]  T. Ohkubo,et al.  Quantitative atom probe analyses of rare-earth-doped ceria by femtosecond pulsed laser. , 2011, Ultramicroscopy.

[19]  K. M. Beck,et al.  Surface Electronic Properties and Site-Specific Laser Desorption Processes of Highly Structured Nanoporous MgO Thin Films , 2005 .

[20]  D. Saxey,et al.  Correlated ion analysis and the interpretation of atom probe mass spectra. , 2011, Ultramicroscopy.

[21]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[22]  Hannu Häkkinen,et al.  Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO , 2005, Science.

[23]  K. Amine,et al.  Conflicting roles of nickel in controlling cathode performance in lithium ion batteries. , 2012, Nano letters.

[24]  Ilke Arslan,et al.  Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. , 2008, Ultramicroscopy.

[25]  B. Hammer,et al.  Active role of oxide support during CO oxidation at Au/MgO. , 2003, Physical review letters.

[26]  W. Hess,et al.  Excitation, Ionization, and Desorption: How Sub-Band Gap Photons Modify the Structure of Oxide Nanoparticles , 2009 .

[27]  A. Shluger,et al.  Mechanism of laser assisted field evaporation from insulating oxides. , 2011, Ultramicroscopy.

[28]  Guido Schmitz,et al.  Laser-Assisted Atom Probe Tomography of Oxide Materials , 2007, Microscopy and Microanalysis.

[29]  Tien T. Tsong,et al.  Field ion image formation , 1978 .

[30]  D. Jaeger,et al.  3-D Cross-Correlation of Atom Probe and STEM Tomography , 2008, Microscopy and Microanalysis.

[31]  G. Smith,et al.  Characterization of Oxidation and Reduction of Pt–Ru and Pt–Rh–Ru Alloys by Atom Probe Tomography and Comparison with Pt–Rh , 2012 .

[32]  S. Ogale,et al.  Investigation of wüstite (Fe1-xO) by femtosecond laser assisted atom probe tomography. , 2011, Ultramicroscopy.

[33]  Brian P. Gorman,et al.  Atom Probe Tomography of Electronic Materials , 2007 .

[34]  A. Shluger,et al.  Spectroscopy of low-coordinated surface sites: Theoretical study of MgO , 1999 .

[35]  T. Berger,et al.  Energy transfer on the MgO surface, monitored by UV-induced H2 chemisorption. , 2003, Journal of the American Chemical Society.

[36]  W. Hess,et al.  Site-specific laser modification of MgO nanoclusters: Towards atomic-scale surface structuring , 2006 .

[37]  D. Seidman,et al.  3-D Atomic-Scale Mapping of Manganese Dopants in Lead Sulfide Nanowires , 2012 .

[38]  A. Shluger,et al.  Energies and Dynamics of Photoinduced Electron and Hole Processes on MgO Powders , 2002 .

[39]  B. Mazumder,et al.  Evaporation mechanisms of MgO in laser assisted atom probe tomography. , 2011, Ultramicroscopy.

[40]  Rajender S Varma,et al.  Self-assembly of metal oxides into three-dimensional nanostructures: synthesis and application in catalysis. , 2009, ACS nano.

[41]  L. E. Thomas,et al.  Microstructure of precipitated Au nanoclusters in MgO , 2003 .

[42]  M. Stamatakis,et al.  Multiscale modeling reveals poisoning mechanisms of MgO-supported Au clusters in CO oxidation. , 2012, Nano letters.

[43]  D Lawrence,et al.  In situ site-specific specimen preparation for atom probe tomography. , 2007, Ultramicroscopy.

[44]  K. M. Beck,et al.  A mechanism of photo-induced desorption of oxygen atoms from MgO nano-crystals , 2005 .

[45]  D. Larson,et al.  Probing the improbable: imaging C atoms in alumina , 2010 .

[46]  A. Shluger,et al.  Wavelength selective excitation of surface oxygen anions on highly dispersed MgO , 2002 .

[47]  C. L. Cheung,et al.  Techniques for Consecutive TEM and Atom Probe Tomography Analysis of Nanowires , 2009, Microscopy and Microanalysis.

[48]  B. Gates,et al.  Simultaneous Presence of Cationic and Reduced Gold in Functioning MgO-Supported CO Oxidation Catalysts: Evidence from X-ray Absorption Spectroscopy , 2002 .

[49]  K. M. Beck,et al.  Two-color laser desorption of nanostructured MgO thin films , 2009 .

[50]  T. Ohkubo,et al.  Laser assisted field evaporation of oxides in atom probe analysis. , 2011, Ultramicroscopy.

[51]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[52]  B. Gates,et al.  Gold Nanoclusters Supported on MgO: Synthesis, Characterization, and Evidence of Au6 , 2001 .

[53]  K. M. Beck,et al.  Effect of surface charge on laser-induced neutral atom desorption , 2010 .

[54]  G. Somorjai,et al.  Nanoscale advances in catalysis and energy applications. , 2010, Nano letters.

[55]  H. Espinosa,et al.  Characterizing Atomic Composition and Dopant Distribution in Wide Band Gap Semiconductor Nanowires Using Laser-Assisted Atom Probe Tomography , 2011 .

[56]  E. Müller,et al.  MASS SPECTROMETRIC ANALYSIS OF LOW TEMPERATURE FIELD EVAPORATION. , 1968 .

[57]  G. Smith,et al.  Characterization of oxidation and reduction of a Palladium-Rhodium alloy by atom-probe tomography , 2012 .

[58]  Michael K Miller,et al.  Invited review article: Atom probe tomography. , 2007, The Review of scientific instruments.