Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune

Abstract We explore the origin and orbital evolution of the Kuiper belt in the framework of a recent model of the dynamical evolution of the giant planets, sometimes known as the Nice model. This model is characterized by a short, but violent, instability phase, during which the planets were on large eccentricity orbits. It successfully explains, for the first time, the current orbital architecture of the giant planets [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459–461], the existence of the Trojans populations of Jupiter and Neptune [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462–465], and the origin of the late heavy bombardment of the terrestrial planets [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466–469]. One characteristic of this model is that the proto-planetary disk must have been truncated at roughly 30 to 35 AU so that Neptune would stop migrating at its currently observed location. As a result, the Kuiper belt would have initially been empty. In this paper we present a new dynamical mechanism which can deliver objects from the region interior to ∼ 35 AU to the Kuiper belt without excessive inclination excitation. In particular, we show that during the phase when Neptune's eccentricity is large, the region interior to its 1:2 mean motion resonance becomes unstable and disk particles can diffuse into this area. In addition, we perform numerical simulations where the planets are forced to evolve using fictitious analytic forces, in a way consistent with the direct N -body simulations of the Nice model. Assuming that the last encounter with Uranus delivered Neptune onto a low-inclination orbit with a semi-major axis of ∼ 27 AU and an eccentricity of ∼0.3, and that subsequently Neptune's eccentricity damped in ∼1 My, our simulations reproduce the main observed properties of the Kuiper belt at an unprecedented level. In particular, our results explain, at least qualitatively: (1) the co-existence of resonant and non-resonant populations, (2) the eccentricity–inclination distribution of the Plutinos, (3) the peculiar semi-major axis—eccentricity distribution in the classical belt, (4) the outer edge at the 1:2 mean motion resonance with Neptune, (5) the bi-modal inclination distribution of the classical population, (6) the correlations between inclination and physical properties in the classical Kuiper belt, and (7) the existence of the so-called extended scattered disk. Nevertheless, we observe in the simulations a deficit of nearly-circular objects in the classical Kuiper belt.

[1]  V. Safronov,et al.  Evolution of the protoplanetary cloud and formation of the earth and the planets , 1972 .

[2]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[3]  Origin of scattered disk resonant TNOs: Evidence for an ancient excited Kuiper belt of 50 AU radius , 2007 .

[4]  S. Stern,et al.  On the number of planets in the outer solar system: Evidence of a substantial population of 1000-km bodies , 1991 .

[5]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[6]  D. A. Papanastassiou,et al.  Isotopic evidence for a terminal lunar cataclysm , 1974 .

[7]  Harold F. Levison,et al.  The Dynamical Structure of the Kuiper Belt , 1995 .

[8]  Harold F. Levison,et al.  The Long-Term Dynamical Behavior of Short-Period Comets , 1993 .

[9]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[10]  Harold F. Levison,et al.  From the Kuiper Belt to Jupiter-Family Comets: The Spatial Distribution of Ecliptic Comets☆ , 1997 .

[11]  M. Moons,et al.  The Resonant Structure of the Kuiper Belt and the Dynamics of the First Five Trans-Neptunian Objects , 1995 .

[12]  S. Kenyon,et al.  The Size Distribution of Kuiper Belt Objects , 2004, astro-ph/0406556.

[13]  Douglas P. Hamilton,et al.  Neptune's capture of its moon Triton in a binary–planet gravitational encounter , 2006, Nature.

[14]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[15]  M. Duncan,et al.  A disk of scattered icy objects and the origin of Jupiter-family comets. , 1997, Science.

[16]  David E. Trilling,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .

[17]  C. Trujillo,et al.  A Thick Cloud of Neptune Trojans and Their Colors , 2006, Science.

[18]  Julio A. Fernández,et al.  The population of faint Jupiter family comets near the Earth , 2006 .

[19]  F. Poulet,et al.  Spectral characteristics and modeling of the Transneptunian object (55565) 2002 AW197 and the Centaurs (55576) 2002 GB10 and (83982) 2002 GO9: ESO Large Program on TNOs and Centaurs , 2005 .

[20]  W. Grundy,et al.  Diverse albedos of small trans-neptunian objects , 2005, astro-ph/0502229.

[21]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[22]  S. Tegler,et al.  Extremely red Kuiper-belt objects in near-circular orbits beyond 40  AU , 2000, Nature.

[23]  F. Masset,et al.  Reversing type II migration: resonance trapping of a lighter giant protoplanet , 2000, astro-ph/0101332.

[24]  M. Duncan,et al.  Embedded star clusters and the formation of the Oort cloud II. The effect of the primordial solar nebula , 2007 .

[25]  A. Morbidelli Modern Integrations of Solar System Dynamics , 2002 .

[26]  Renu Malhotra,et al.  The origin of Pluto's peculiar orbit , 1995, Nature.

[27]  Chadwick A. Trujillo,et al.  Properties of the Trans-Neptunian Belt: Statistics from the Canada-France-Hawaii Telescope Survey , 2001 .

[28]  S. Cornell,et al.  A Giant Impact Origin of Pluto-Charon , 2005 .

[29]  M. E. Brown,et al.  The Size Distribution of Trans-Neptunian Bodies* , 2004 .

[30]  CAPTURE OF IRREGULAR SATELLITES DURING PLANETARY ENCOUNTERS , 2007 .

[31]  H. Levison,et al.  Remarks on Modeling the Formation of Uranus and Neptune , 2001 .

[32]  B. G. Marsden,et al.  Nomenclature in the Outer Solar System , 2008 .

[33]  R. Gomes,et al.  The origin of the Kuiper Belt high-inclination population , 2003 .

[34]  S. Stern,et al.  Collisional Erosion in the Primordial Edgeworth-Kuiper Belt and the Generation of the 30-50 AU Kuiper Gap , 1997 .

[35]  Alessandro Morbidelli,et al.  The Kuiper Belt and the Primordial Evolution of the Solar System , 2004 .

[36]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[37]  J. Colwell,et al.  Accretion in the Edgeworth-Kuiper Belt: Forming 100-1000 KM Radius Bodies at 30 AU and Beyond. , 1997 .

[38]  Alessandro Morbidelli,et al.  Scenarios for the Origin of the Orbits of the Trans-Neptunian Objects 2000 CR105 and 2003 VB12 (Sedna) , 2004, astro-ph/0403358.

[39]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[40]  Neptune’s Migration into a Stirred-Up Kuiper Belt: A Detailed Comparison of Simulations to Observations , 2005, astro-ph/0507319.

[41]  J. Luu,et al.  Accretion in the Early Kuiper Belt. I. Coagulation and Velocity Evolution , 1998, astro-ph/9804185.

[42]  Chadwick A. Trujillo,et al.  A Correlation between Inclination and Color in the Classical Kuiper Belt , 2002, astro-ph/0201040.

[43]  Harold F. Levison,et al.  The formation of the Kuiper belt by the outward transport of bodies during Neptune's migration , 2003, Nature.

[44]  The Edge of the Solar System , 2000, astro-ph/0011037.

[45]  G. Bernstein,et al.  Observational Limits on a Distant Cold Kuiper Belt , 2002 .

[46]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .

[47]  Scott J. Kenyon,et al.  Accretion in the Early Kuiper Belt , 1999 .

[48]  Orbital Evolution of Planets Embedded in a Planetesimal Disk , 1999, astro-ph/9902370.

[49]  M. Brown,et al.  The Inclination Distribution of the Kuiper Belt , 2001 .

[50]  H. F. Levison,et al.  ON THE SIZE DEPENDENCE OF THE INCLINATION DISTRIBUTION OF THE MAIN KUIPER BELT , 2001 .

[51]  L. Jones,et al.  The Orbital and Spatial Distribution of the Kuiper Belt , 2008 .

[52]  S. Alan Stern,et al.  On the Collisional Environment, Accretion Time Scales, and Architecture of the Massive, Primordial Kuiper Belt. , 1996 .

[53]  Jack Wisdom,et al.  Dynamical Stability in the Outer Solar System and the Delivery of Short Period Comets , 1993 .

[54]  A. Crida,et al.  The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk , 2007, 0704.1210.

[55]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[56]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[57]  Harold F. Levison,et al.  Origin and orbital distribution of the trans‐Neptunian scattered disc , 2004 .

[58]  Harold F. Levison,et al.  Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? , 2004 .

[59]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[60]  Scott J. Kenyon,et al.  Accretion in the Early Outer Solar System , 1999 .

[61]  M. Barucci,et al.  Multicolor photometry of trans-neptunian objects , 2001 .

[62]  Resonance occupation in the Kuiper belt: Case examples of the 5:2 and Trojan resonances , 2003, astro-ph/0301458.

[63]  Scott J. Kenyon,et al.  Accretion in the Early Kuiper Belt II. Fragmentation , 1999 .

[64]  Renu Malhotra,et al.  The origin of Pluto's orbit: implications for the , 1994, astro-ph/9504036.

[65]  E. Chiang,et al.  Brownian Motion in Planetary Migration , 2006, astro-ph/0607203.

[66]  Alessandro Morbidelli,et al.  The Structure of the Kuiper Belt: Size Distribution and Radial Extent , 2001 .

[67]  Michael E. Brown The Inclination Distribution of the Kuiper Belt , 2001 .

[68]  S. Ida,et al.  Orbital evolution and accretion of protoplanets tidally interacting with a gas disk. II. Solid surface density evolution with type-I migration , 2006 .

[69]  Martin J. Duncan,et al.  Embedded star clusters and the formation of the Oort Cloud , 2006 .

[70]  Johns Hopkins University,et al.  Disk Accretion onto High-Mass Planets , 1999 .

[71]  Dale P. Cruikshank,et al.  The solar system beyond Neptune , 2008 .

[72]  Harold F. Levison,et al.  Oligarchic growth of giant planets , 2003 .

[73]  Stellar encounters as the origin of distant Solar System objects in highly eccentric orbits , 2004, Nature.

[74]  Chadwick A. Trujillo,et al.  The Radial Distribution of the Kuiper Belt , 2001 .