Reference priors for shrinkage and smoothing parameters

Abstract A reference prior and corresponding reference posteriors are derived for a basic Normal variance components model with two components. Different parameterizations are considered, in particular one in terms of a shrinkage or smoothing parameter. Earlier results for the one-way ANOVA setting are generalized and a broad range of applications of the general results is indicated. Numerical examples of application to spline smoothing are given for illustration and the results compared with other well-known techniques considered to be “non-informative” about the smoothing parameter.

[1]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[2]  G. Wahba A Comparison of GCV and GML for Choosing the Smoothing Parameter in the Generalized Spline Smoothing Problem , 1985 .

[3]  A NOTE ON SMOOTHING SPLINES AS BAYESIAN ESTIMATES , 1993 .

[4]  J. Bernardo,et al.  An introduction to Bayesian reference analysis: inference on the ratio of multinomial parameters , 1998 .

[5]  A. Linde,et al.  Splines from a Bayesian point of view , 1995 .

[6]  Kathryn Chaloner,et al.  em Bayesian analysis in statistics and econometrics , 1997 .

[7]  G. Casella,et al.  The Effect of Improper Priors on Gibbs Sampling in Hierarchical Linear Mixed Models , 1996 .

[8]  S. Zacks,et al.  Mean Square Efficiency of Estimators of Variance Components , 1969 .

[9]  C. R. Rao,et al.  Linear Statistical Inference and its Applications , 1968 .

[10]  R. Moyeed,et al.  Making robust the cross-validatory choice of smoothing parameter in spline smoothing regression , 1989 .

[11]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[12]  B. M. Hill,et al.  Inference about Variance Components in the One-Way Model , 1965 .

[13]  Bayesian reference prior analysis on the ratio of variances for the balanced one-way random effect model , 1994 .

[14]  G. Robinson That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .

[15]  Eric P. Fox Bayesian Statistics 3 , 1991 .

[16]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[17]  Malay Ghosh,et al.  ON THE INVARIANCE OF NONINFORMATIVE PRIORS , 1996 .

[18]  J. Bernardo Nested Hypothesis Testing: The Bayesian Reference Criterion , 2001 .

[19]  G. Wahba Spline models for observational data , 1990 .

[20]  Stephen Portnoy,et al.  Formal Bayes Estimation with Application to a Random Effects Model , 1971 .

[21]  A comparison of bayes and maximum likelihood estimation of the intraclass correlation coefficient , 1990 .

[22]  Nozer D. Singpurwalla,et al.  Non-informative priors do not exist A dialogue with José M. Bernardo , 1997 .

[23]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[24]  Terry Speed,et al.  [That BLUP is a Good Thing: The Estimation of Random Effects]: Comment , 1991 .

[25]  F. N. David,et al.  LINEAR STATISTICAL INFERENCE AND ITS APPLICATION , 1967 .

[26]  W. N. Venables,et al.  Estimation of Variance Components and Applications. , 1990 .

[27]  Ronald Bremer,et al.  Estimation of variance components and applications , 1988 .

[28]  Malay Ghosh,et al.  Some remarks on noninformative priors , 1995 .

[29]  James O. Berger,et al.  Reference Priors in a Variance Components Problem , 1992 .

[30]  L. Broemeling,et al.  Bayesian inference for the variance components in general mixed linear models , 1983 .

[31]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[32]  J. Rice,et al.  Smoothing spline models for the analysis of nested and crossed samples of curves , 1998 .

[33]  Angelika van der Linde Estimating the smoothing parameter in generalized spline-based regression , 2001, Comput. Stat..

[34]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .