Automatic Estimation and Removal of Noise from a Single Image

Image denoising algorithms often assume an additive white Gaussian noise (AWGN) process that is independent of the actual RGB values. Such approaches cannot effectively remove color noise produced by today's CCD digital camera. In this paper, we propose a unified framework for two tasks: automatic estimation and removal of color noise from a single image using piecewise smooth image models. We introduce the noise level function (NLF), which is a continuous function describing the noise level as a function of image brightness. We then estimate an upper bound of the real NLF by fitting a lower envelope to the standard deviations of per-segment image variances. For denoising, the chrominance of color noise is significantly removed by projecting pixel values onto a line fit to the RGB values in each segment. Then, a Gaussian conditional random field (GCRF) is constructed to obtain the underlying clean image from the noisy input. Extensive experiments are conducted to test the proposed algorithm, which is shown to outperform state-of-the-art denoising algorithms.

[1]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[2]  John P. Rossi,et al.  Digital Techniques for Reducing Television Noise , 1978 .

[3]  R. E. Wheeler Statistical distributions , 1983, APLQ.

[4]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  William F. Schreiber,et al.  Fundamentals of Electronic Imaging Systems , 1986 .

[7]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[8]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[10]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[11]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[12]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Glenn Healey,et al.  Segmenting images using normalized color , 1992, IEEE Trans. Syst. Man Cybern..

[15]  Glenn Healey,et al.  Radiometric CCD camera calibration and noise estimation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[17]  Edward H. Adelson,et al.  Noise removal via Bayesian wavelet coring , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[18]  Eero P. Simoncelli Statistical models for images: compression, restoration and synthesis , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[19]  Song-Chun Zhu,et al.  Prior Learning and Gibbs Reaction-Diffusion , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[21]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[22]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[23]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[24]  Wolfgang Förstner,et al.  Image Preprocessing for Feature Extraction in Digital Intensity, Color and Range Images , 2000 .

[25]  M. Evans Statistical Distributions , 2000 .

[26]  D. Mumford,et al.  Stochastic models for generic images , 2001 .

[27]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[28]  Takeo Kanade,et al.  Statistical Calibration of the CCD Imaging Process , 2001, ICCV.

[29]  Guoliang Fan,et al.  Image denoising using a local contextual hidden Markov model in the wavelet domain , 2001, IEEE Signal Processing Letters.

[30]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[31]  Wesley E. Snyder,et al.  Demosaicking methods for Bayer color arrays , 2002, J. Electronic Imaging.

[32]  Danny Barash,et al.  A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Alexei A. Efros,et al.  Fast bilateral filtering for the display of high-dynamic-range images , 2002 .

[34]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Zhuowen Tu,et al.  Image Segmentation by Data-Driven Markov Chain Monte Carlo , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Rachid Deriche,et al.  Vector-valued image regularization with PDE's: a common framework for different applications , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[37]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[38]  Gudrun Klinker,et al.  A physical approach to color image understanding , 1989, International Journal of Computer Vision.

[39]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[40]  W. B. Collis,et al.  Training Methods for Image Noise Level Estimation on Wavelet Components , 2004, EURASIP J. Adv. Signal Process..

[41]  David Mumford,et al.  Occlusion Models for Natural Images: A Statistical Study of a Scale-Invariant Dead Leaves Model , 2004, International Journal of Computer Vision.

[42]  Shree K. Nayar,et al.  Modeling the space of camera response functions , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Song-Chun Zhu,et al.  Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling , 1998, International Journal of Computer Vision.

[44]  Javier Portilla,et al.  Full blind denoising through noise covariance estimation using Gaussian scale mixtures in the wavelet domain , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[45]  G. A Theory for Multiresolution Signal Decomposition : The Wavelet Representation , 2004 .

[46]  Michael F. Cohen,et al.  Digital photography with flash and no-flash image pairs , 2004, ACM Trans. Graph..

[47]  Suyash P. Awate,et al.  Higher-order image statistics for unsupervised, information-theoretic, adaptive, image filtering , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[48]  Edward H. Adelson,et al.  Recovering intrinsic images from a single image , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Leonard McMillan,et al.  Video enhancement using per-pixel virtual exposures , 2005, ACM Trans. Graph..

[50]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[51]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[52]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Nebojsa Jojic,et al.  Consistent segmentation for optical flow estimation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[54]  Michael Elad,et al.  Image Denoising Via Learned Dictionaries and Sparse representation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[55]  R. Szeliski Locally adapted hierarchical basis preconditioning , 2006, SIGGRAPH 2006.

[56]  Edward H. Adelson,et al.  Estimating Intrinsic Component Images using Non-Linear Regression , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[57]  David Tschumperlé,et al.  Fast Anisotropic Smoothing of Multi-Valued Images using Curvature-Preserving PDE's , 2006, International Journal of Computer Vision.

[58]  Richard Szeliski,et al.  Noise Estimation from a Single Image , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[59]  Edward H. Adelson,et al.  Learning Gaussian Conditional Random Fields for Low-Level Vision , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[60]  Frédo Durand,et al.  A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach , 2006, International Journal of Computer Vision.

[61]  Prashant Parikh A Theory of Communication , 2010 .