Calcium Microdomains in Aspiny Dendrites

Dendritic spines receive excitatory synapses and serve as calcium compartments, which appear to be necessary for input-specific synaptic plasticity. Dendrites of GABAergic interneurons have few or no spines and thus do not possess a clear morphological basis for synapse-specific compartmentalization. We demonstrate using two-photon calcium imaging that activation of single synapses on aspiny dendrites of neocortical fast spiking (FS) interneurons creates highly localized calcium microdomains, often restricted to less than 1 microm of dendritic space. We confirm using ultrastructural reconstruction of imaged dendrites the absence of any morphological basis for this compartmentalization and show that it is dependent on the fast kinetics of calcium-permeable (CP) AMPA receptors and fast local extrusion via the Na+/Ca2+ exchanger. Because aspiny dendrites throughout the CNS express CP-AMPA receptors, we propose that CP-AMPA receptors mediate a spine-free mechanism of input-specific calcium compartmentalization.

[1]  D. K. Morest,et al.  The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Golgi and Nissl methods , 1982, Neuroscience.

[2]  Rafael Yuste,et al.  A two-photon and second-harmonic microscope. , 2003, Methods.

[3]  J. Lübke,et al.  Functional Properties of AMPA and NMDA Receptors Expressed in Identified Types of Basal Ganglia Neurons , 1997, The Journal of Neuroscience.

[4]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[5]  J. Wickens Electrically coupled but chemically isolated synapses: Dendritic spines and calcium in a rule for synaptic modification , 1988, Progress in Neurobiology.

[6]  C. Koch,et al.  The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  B. Sakmann,et al.  Structural determinants of ion flow through recombinant glutamate receptor channels , 1991, Science.

[8]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[9]  R S Zucker,et al.  Calcium in motor nerve terminals associated with posttetanic potentiation , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  D. Paré,et al.  Cat intraamygdaloid inhibitory network: Ultrastructural organization of parvalbumin‐immunoreactive elements , 1998, The Journal of comparative neurology.

[11]  Donata Oertel,et al.  Correlation of AMPA Receptor Subunit Composition with Synaptic Input in the Mammalian Cochlear Nuclei , 2001, The Journal of Neuroscience.

[12]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.

[13]  J. Eilers,et al.  Diffusional mobility of parvalbumin in spiny dendrites of cerebellar Purkinje neurons quantified by fluorescence recovery after photobleaching. , 2003, Biophysical journal.

[14]  B. Kolb,et al.  Sex differences in cortical plasticity and behavior following anterior cortical kindling in rats. , 1999, Cerebral cortex.

[15]  H. Rhim,et al.  Enhanced Learning and Memory in Mice Lacking Na+/Ca2+ Exchanger 2 , 2003, Neuron.

[16]  R. Yuste,et al.  Mechanisms of Calcium Decay Kinetics in Hippocampal Spines: Role of Spine Calcium Pumps and Calcium Diffusion through the Spine Neck in Biochemical Compartmentalization , 2000, The Journal of Neuroscience.

[17]  D. Yurgelun-Todd,et al.  The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Horseradish peroxidase labelling of identified cell types , 1982, Neuroscience.

[18]  Henry Markram,et al.  Competitive Calcium Binding: Implications for Dendritic Calcium Signaling , 1998, Journal of Computational Neuroscience.

[19]  Michael C. Bateman,et al.  Rapid Alterations in Dendrite Morphology during Sublethal Hypoxia or Glutamate Receptor Activation , 1996, Neurobiology of Disease.

[20]  C. McBain,et al.  Distinct NMDA Receptors Provide Differential Modes of Transmission at Mossy Fiber-Interneuron Synapses , 2002, Neuron.

[21]  P. Somogyi,et al.  Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat , 1983, Neuroscience.

[22]  Suk-Ho Lee,et al.  Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites , 2000, The Journal of physiology.

[23]  A. C. Jackson,et al.  Subpopulations of GABAergic and non‐GABAergic rat dorsal horn neurons express Ca2+‐permeable AMPA receptors , 1999, The European journal of neuroscience.

[24]  M. Michaelis,et al.  Antisense oligonucleotide suppression of Na+/Ca2+ exchanger activity in primary neurons from rat brain , 2000, Neuroscience Letters.

[25]  W. Denk,et al.  Mechanisms of Calcium Influx into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by NMDA Receptors, and Optical Quantal Analysis , 1999, The Journal of Neuroscience.

[26]  R. Morris,et al.  Spinal lamina I neurons that express neurokinin 1 receptors: morphological analysis , 2000, Neuroscience.

[27]  L. Trussell,et al.  Time Course and Permeation of Synaptic AMPA Receptors in Cochlear Nuclear Neurons Correlate with Input , 1999, The Journal of Neuroscience.

[28]  B. Sakmann,et al.  Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS , 1995, Neuron.

[29]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  M. C. Angulo,et al.  Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. , 1999, Journal of neurophysiology.

[31]  S. Redman,et al.  Long-term plasticity at excitatory synapses on aspinous interneurons in area CA1 lacks synaptic specificity. , 1998, Journal of neurophysiology.

[32]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[33]  P. Somogyi,et al.  Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex. , 1997, The Journal of physiology.

[34]  Rafael Yuste,et al.  Book Review: On the Function of Dendritic Spines , 2001 .

[35]  K. Svoboda,et al.  Estimating intracellular calcium concentrations and buffering without wavelength ratioing. , 2000, Biophysical journal.

[36]  T. Sejnowski,et al.  Dynamics of dendritic calcium transients evoked by quantal release at excitatory hippocampal synapses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  K. Holthoff,et al.  A problem with Hebb and local spikes , 2002, Trends in Neurosciences.

[38]  F. Lattanzio,et al.  The effect of pH on rate constants, ion selectivity and thermodynamic properties of fluorescent calcium and magnesium indicators. , 1991, Biochemical and biophysical research communications.

[39]  R. Yuste,et al.  On the function of dendritic spines. , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  P. Somogyi,et al.  The section-Golgi impregnation procedure. 2. Immunocytochemical demonstration of glutamate decar☐ylase in Golgi-impregnated neurons and in their afferent synaptic boutons in the visual cortex of the cat , 1983, Neuroscience.

[42]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[43]  Pankaj Sah,et al.  Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala , 1998, Nature.

[44]  L. Stryer,et al.  Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. , 1992, Science.

[45]  B Sakmann,et al.  Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. , 1995, The Journal of physiology.

[46]  Carlo Sala,et al.  Induction of dendritic spines by an extracellular domain of AMPA receptor subunit GluR2 , 2003, Nature.

[47]  P. Jonas,et al.  PTP and LTP at a hippocampal mossy fiber-interneuron synapse , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[49]  A. Michailova,et al.  Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum. , 2002, Biophysical journal.

[50]  E. Friauf,et al.  Distribution of the calcium‐binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats , 1996, The Journal of comparative neurology.

[51]  A. Konnerth,et al.  NMDA Receptor-Mediated Subthreshold Ca2+ Signals in Spines of Hippocampal Neurons , 2000, The Journal of Neuroscience.

[52]  P. Emson,et al.  Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina , 1990, The Journal of comparative neurology.

[53]  Stuart G. Cull-Candy,et al.  Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype , 2000, Nature.

[54]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[55]  M. Bennett,et al.  Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[57]  Hartmut Schmidt,et al.  Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k , 2003, The Journal of physiology.

[58]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[59]  G. Augustine,et al.  Local Calcium Signaling in Neurons , 2003, Neuron.

[60]  J. Kao,et al.  Compartmentalized and Binary Behavior of Terminal Dendrites in Hippocampal Pyramidal Neurons , 2001, Science.

[61]  R. Gábriel,et al.  Immunocytochemical localization of parvalbumin- and neurofilament triplet protein immunoreactivity in the cat retina: colocalization in a subpopulation of AII amacrine cells , 1992, Brain Research.

[62]  B. Sakmann,et al.  Back‐propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex , 2001, The Journal of physiology.

[63]  E. F. Stanley,et al.  Na/Ca Exchanger and PMCA Localization in Neurons and Astrocytes , 2002, Annals of the New York Academy of Sciences.

[64]  M. Goldberg,et al.  Dendritic Spines Lost during Glutamate Receptor Activation Reemerge at Original Sites of Synaptic Contact , 2001, The Journal of Neuroscience.

[65]  M. Washburn,et al.  Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  R Llinás,et al.  Microdomains of high calcium concentration in a presynaptic terminal. , 1992, Science.

[67]  J. Potter,et al.  The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. , 1981, Biophysical journal.

[68]  P. Somogyi,et al.  Massive Autaptic Self-Innervation of GABAergic Neurons in Cat Visual Cortex , 1997, The Journal of Neuroscience.

[69]  Y. Kawaguchi,et al.  Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  T. Endo,et al.  Distribution of parvalbumin immunoreactivity in the human brain , 1991, Journal of Neurology.

[71]  K. Tóth,et al.  Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons , 1998, Nature Neuroscience.

[72]  E. Hartveit,et al.  Functional characteristics of non‐NMDA‐type ionotropic glutamate receptor channels in AII amacrine cells in rat retina , 2002, The Journal of physiology.

[73]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Contribution of Ca2+‐permeable AMPA and NMDA receptors to subthreshold Ca2+dynamics , 2003, The Journal of physiology.

[74]  Micha E. Spira,et al.  Low Mobility of the Ca2+ Buffers in Axons of Cultured Aplysia Neurons , 1997, Neuron.

[75]  D L Schomer,et al.  Neocortical Dendritic Pathology in Human Partial Epilepsy: A Quantitative Golgi Study , 1994, Epilepsia.

[76]  G. Lynch,et al.  Benzamide-Type AMPA Receptor Modulators Form Two Subfamilies with Distinct Modes of Action , 2002, Journal of Pharmacology and Experimental Therapeutics.

[77]  Alberto Bacci,et al.  A Developmental Switch of AMPA Receptor Subunits in Neocortical Pyramidal Neurons , 2002, The Journal of Neuroscience.

[78]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Ia‐type K+ channels control action potential backpropagation , 2003, The Journal of physiology.

[79]  D. K. Morest,et al.  The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Electron microscopy , 1982, Neuroscience.

[80]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[81]  Anastassios V. Tzingounis,et al.  Functional downregulation of GluR2 in piriform cortex of kindled animals , 2000, Synapse.

[82]  Chris J. McBain,et al.  Glutamatergic synapses onto hippocampal interneurons: precision timing without lasting plasticity , 1999, Trends in Neurosciences.

[83]  I. Raman,et al.  AMPA receptors with high Ca2+ permeability mediate synaptic transmission in the avian auditory pathway. , 1995, The Journal of physiology.

[84]  E. Mugnaini GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: Light and electron microscopic immunocytochemistry , 1985, The Journal of comparative neurology.

[85]  Arnd Roth,et al.  Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse , 1997, Neuron.

[86]  S. H. Lee,et al.  Differences in Ca2+ buffering properties between excitatory and inhibitory hippocampal neurons from the rat , 2000, The Journal of physiology.

[87]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[88]  H. Katsumaru,et al.  Immunocytochemical study of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus , 2004, Experimental Brain Research.

[89]  F. Helmchen Dendrites as biochemical compartments , 1999 .

[90]  B. Sakmann,et al.  Ca(2+)‐permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus. , 1995, The Journal of physiology.

[91]  D. Tank,et al.  Dendritic Integration in Mammalian Neurons, a Century after Cajal , 1996, Neuron.

[92]  Rafael Yuste,et al.  A custom-made two-photon microscope and deconvolution system , 2000, Pflügers Archiv.