CURVATURE, TORSION, MICROCANONICAL DENSITY AND STOCHASTIC TRANSITION
暂无分享,去创建一个
[1] M. Pettini,et al. On the Riemannian description of chaotic instability in Hamiltonian dynamics. , 1995, Chaos.
[2] M. Casartelli,et al. Nearly separable behavior of Fermi-Pasta-Ulam chains through the stochasticity threshold , 1995 .
[3] M. A. Lieberman,et al. Time scale to ergodicity in the Fermi-Pasta-Ulam system. , 1995, Chaos.
[4] Lívi,et al. Gaussian model for chaotic instability of Hamiltonian flows. , 1995, Physical review letters.
[5] H. Kantz,et al. Equipartition thresholds in chains of anharmonic oscillators , 1994 .
[6] M. Casartelli,et al. Thermodynamic limit beyond the stochasticity threshold in nonlinear chains , 1993 .
[7] Casetti,et al. Analytic computation of the strong stochasticity threshold in Hamiltonian dynamics using Riemannian geometry. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[8] Pettini. Geometrical hints for a nonperturbative approach to Hamiltonian dynamics. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[9] M. Casartelli,et al. Complexity, rate of energy exchanges and stochasticity , 1987 .
[10] M. Casartelli,et al. Low stochasticity and relaxation in the Hénon-Heiles model , 1985 .
[11] G. Benettin,et al. Kolmogorov Entropy and Numerical Experiments , 1976 .