Nature inspired optimization algorithms or simply variations of metaheuristics?

In the last decade, we observe an increasing number of nature-inspired optimization algorithms, with authors often claiming their novelty and their capabilities of acting as powerful optimization techniques. However, a considerable number of these algorithms do not seem to draw inspiration from nature or to incorporate successful tactics, laws, or practices existing in natural systems, while also some of them have never been applied in any optimization field, since their first appearance in literature. This paper presents some interesting findings that have emerged after the extensive study of most of the existing nature-inspired algorithms. The need for irrationally introducing new nature inspired intelligent (NII) algorithms in literature is also questioned and possible drawbacks of NII algorithms met in literature are discussed. In addition, guidelines for the development of new nature-inspired algorithms are proposed, in an attempt to limit the misleading appearance of variation of metaheuristics as nature inspired optimization algorithms.

[1]  Anupam Yadav,et al.  AEFA: Artificial electric field algorithm for global optimization , 2019, Swarm Evol. Comput..

[2]  Ali Kaveh,et al.  Lion Pride Optimization Algorithm: A meta-heuristic method for global optimization problems , 2018, Scientia Iranica.

[3]  Ali Kaveh,et al.  CYCLICAL PARTHENOGENESIS ALGORITHM: A NEW META-HEURISTIC ALGORITHM , 2017 .

[4]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[5]  Alberto Tonda Inspyred: Bio-inspired algorithms in Python , 2019, Genetic Programming and Evolvable Machines.

[6]  Xiaoli Zhang,et al.  An ACO-based algorithm for parameter optimization of support vector machines , 2010, Expert Syst. Appl..

[7]  Bilal Alatas,et al.  Sports inspired computational intelligence algorithms for global optimization , 2019, Artificial Intelligence Review.

[8]  Xiaodong Li,et al.  Swarm Intelligence in Optimization , 2008, Swarm Intelligence.

[9]  Francesc Comellas,et al.  Bumblebees: a multiagent combinatorial optimization algorithm inspired by social insect behaviour , 2009, GEC '09.

[10]  Simon Fong,et al.  Elephant Search Algorithm for optimization problems , 2015, 2015 Tenth International Conference on Digital Information Management (ICDIM).

[11]  Andrea Serani,et al.  Dolphin Pod Optimization - A Nature-Inspired Deterministic Algorithm for Simulation-Based Design , 2017, MOD.

[12]  Vijay Kumar,et al.  Emperor penguin optimizer: A bio-inspired algorithm for engineering problems , 2018, Knowl. Based Syst..

[13]  Seyedali Mirjalili,et al.  Henry gas solubility optimization: A novel physics-based algorithm , 2019, Future Gener. Comput. Syst..

[14]  Hossam Faris,et al.  Optimizing connection weights in neural networks using the whale optimization algorithm , 2016, Soft Computing.

[15]  Sadoullah Ebrahimnejad,et al.  Emperor Penguins Colony: a new metaheuristic algorithm for optimization , 2019, Evolutionary Intelligence.

[16]  Ajith Abraham,et al.  Bacterial Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and Applications , 2009, Foundations of Computational Intelligence.

[17]  Qiang Chen,et al.  An ABC supported QoS multicast routing scheme based on beehive algorithm , 2008, QShine '08.

[18]  Ali Ahrari,et al.  Grenade Explosion Method - A novel tool for optimization of multimodal functions , 2010, Appl. Soft Comput..

[19]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[20]  Vahideh Hayyolalam,et al.  Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering optimization problems , 2020, Eng. Appl. Artif. Intell..

[21]  Marc Toussaint,et al.  A No-Free-Lunch theorem for non-uniform distributions of target functions , 2004, J. Math. Model. Algorithms.

[22]  Nils J. Nilsson,et al.  Artificial Intelligence: A New Synthesis , 1997 .

[23]  S. Ilker Birbil,et al.  A Global Optimization Method for Solving Fuzzy Relation Equations , 2003, IFSA.

[24]  Leandro dos Santos Coelho,et al.  Cheetah Based Optimization Algorithm: A Novel Swarm Intelligence Paradigm , 2018, ESANN.

[25]  Alexandros Tzanetos,et al.  Nature Inspired Optimization Algorithms Related to Physical Phenomena and Laws of Science: A Survey , 2017, Int. J. Artif. Intell. Tools.

[26]  Hussein A. Abbass,et al.  MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[27]  Muzaffar Eusuff,et al.  Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization , 2006 .

[28]  Ali Kaveh,et al.  Colliding bodies optimization: A novel meta-heuristic method , 2014 .

[29]  Pei-wei Tsai,et al.  Cat Swarm Optimization , 2006, PRICAI.

[30]  Ali Kaveh,et al.  Natural Forest Regeneration Algorithm: A New Meta-Heuristic , 2016 .

[31]  B. Rajakumar The Lion's Algorithm: A New Nature-Inspired Search Algorithm , 2012 .

[32]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[33]  Hong Yan,et al.  Adaptive Cockroach Colony Optimization for Rod-Like Robot Navigation , 2015 .

[34]  Seyedali Mirjalili,et al.  Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems , 2015, Neural Computing and Applications.

[35]  D. Pham,et al.  THE BEES ALGORITHM, A NOVEL TOOL FOR COMPLEX OPTIMISATION PROBLEMS , 2006 .

[36]  Tibor Bosse,et al.  Recent Trends in Applied Artificial Intelligence , 2013, Lecture Notes in Computer Science.

[37]  Yu Liu,et al.  A new bio-inspired optimisation algorithm: Bird Swarm Algorithm , 2016, J. Exp. Theor. Artif. Intell..

[38]  Iztok Fister,et al.  A comprehensive database of Nature-Inspired Algorithms , 2020, Data in brief.

[39]  Omid Bozorg Haddad,et al.  Honey-Bees Mating Optimization (HBMO) Algorithm: A New Heuristic Approach for Water Resources Optimization , 2006 .

[40]  Farookh Khadeer Hussain,et al.  Support vector regression with chaos-based firefly algorithm for stock market price forecasting , 2013, Appl. Soft Comput..

[41]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[42]  A. Mucherino,et al.  Monkey search: a novel metaheuristic search for global optimization , 2007 .

[43]  Lester James V. Miranda,et al.  PySwarms: a research toolkit for Particle Swarm Optimization in Python , 2018, J. Open Source Softw..

[44]  Ying Tan,et al.  Fireworks Algorithm for Optimization , 2010, ICSI.

[45]  John Mark Bishop,et al.  The Stochastic Search Network , 1992 .

[46]  Yu Liu,et al.  A New Bio-inspired Algorithm: Chicken Swarm Optimization , 2014, ICSI.

[47]  Reda Mohamed Hamou,et al.  New Swarm Intelligence Technique of Artificial Social Cockroaches for Suspicious Person Detection Using N-Gram Pixel with Visual Result Mining , 2015, Int. J. Strateg. Decis. Sci..

[48]  Javier Del Ser,et al.  jMetalPy: a Python Framework for Multi-Objective Optimization with Metaheuristics , 2019, Swarm Evol. Comput..

[49]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[50]  Simon Fong,et al.  Wolf search algorithm with ephemeral memory , 2012, Seventh International Conference on Digital Information Management (ICDIM 2012).

[51]  Md Alauddin,et al.  Mosquito flying optimization (MFO) , 2016, 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT).

[52]  P. Deepa Shenoy,et al.  Fault tolerant BeeHive routing in mobile ad-hoc multi-radio network , 2014, 2014 IEEE REGION 10 SYMPOSIUM.

[53]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .

[54]  Kenneth Sörensen,et al.  Metaheuristics - the metaphor exposed , 2015, Int. Trans. Oper. Res..

[55]  Hamed Shah-Hosseini,et al.  Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation , 2011, Int. J. Comput. Sci. Eng..

[56]  Christian Blum,et al.  Implementing a model of Japanese tree frogs' calling behavior in sensor networks: a study of possible improvements , 2011, GECCO '11.

[57]  Alexandros Tzanetos,et al.  A Comprehensive Survey on the Applications of Swarm Intelligence and Bio-Inspired Evolutionary Strategies , 2020 .

[58]  Petros Koumoutsakos,et al.  Optimization based on bacterial chemotaxis , 2002, IEEE Trans. Evol. Comput..

[59]  Asaf Varol,et al.  A Novel Intelligent Optimization Algorithm Inspired from Circular Water Waves , 2015 .

[60]  Q. Henry Wu,et al.  A bacterial swarming algorithm for global optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[61]  James M. Keller,et al.  Roach Infestation Optimization , 2008, 2008 IEEE Swarm Intelligence Symposium.

[62]  Hossam Faris,et al.  Grasshopper optimization algorithm for multi-objective optimization problems , 2017, Applied Intelligence.

[63]  Iztok Fister,et al.  A new population-based nature-inspired algorithm every month : Is the current era coming to the end ? , 2016 .

[64]  Shuai Li,et al.  BAS: Beetle Antennae Search Algorithm for Optimization Problems , 2017, ArXiv.

[65]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[66]  Dušan Teodorović,et al.  Bee Colony Optimization – a Cooperative Learning Approach to Complex Transportation Problems , 2005 .

[67]  Magdalene Marinaki,et al.  Bumble Bees Mating Optimization Algorithm for the Vehicle Routing Problem , 2014 .

[68]  Grega Vrbancic,et al.  NiaPy: Python microframework for building nature-inspired algorithms , 2018, J. Open Source Softw..

[69]  Christian Blum,et al.  Swarm Intelligence: Introduction and Applications , 2008, Swarm Intelligence.

[70]  Ardeshir Bahreininejad,et al.  Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems , 2012 .

[71]  M. Osman Tokhi,et al.  A novel adaptive spiral dynamic algorithm for global optimization , 2013, 2013 13th UK Workshop on Computational Intelligence (UKCI).

[72]  Muhammad Arif,et al.  MOX: A novel global optimization algorithm inspired from Oviposition site selection and egg hatching inhibition in mosquitoes , 2011, Appl. Soft Comput..

[73]  MirjaliliSeyedali Moth-flame optimization algorithm , 2015 .

[74]  Janez Brest,et al.  A Brief Review of Nature-Inspired Algorithms for Optimization , 2013, ArXiv.

[75]  Jiang Jianjun,et al.  A Dolphin Partner Optimization , 2009, 2009 WRI Global Congress on Intelligent Systems.

[76]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[77]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[78]  Fariborz Jolai,et al.  Lion Optimization Algorithm (LOA): A nature-inspired metaheuristic algorithm , 2016, J. Comput. Des. Eng..

[79]  Chen Zhaohui,et al.  Cockroach swarm optimization for vehicle routing problems , 2011 .

[80]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[81]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[82]  Harish Sharma,et al.  Spider Monkey Optimization algorithm for numerical optimization , 2014, Memetic Computing.

[83]  Seyed Mohammad Mirjalili,et al.  Ions motion algorithm for solving optimization problems , 2015, Appl. Soft Comput..

[84]  Qiang Liu,et al.  Beetle Swarm Optimization Algorithm: Theory and Application , 2018, Filomat.

[85]  Leandro dos Santos Coelho,et al.  A Novel Metaheuristic Algorithm Inspired by Rhino Herd Behavior , 2018 .

[86]  Kun Li,et al.  Fault diagnosis for down-hole conditions of sucker rod pumping systems based on the FBH–SC method , 2015, Petroleum Science.

[87]  S. Hr. Aghay Kaboli,et al.  Rain-fall optimization algorithm: A population based algorithm for solving constrained optimization problems , 2017, J. Comput. Sci..

[88]  Lionel M. Ni,et al.  Proceedings of the 5th International ICST Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness , 2008 .

[89]  Bo Wang,et al.  Lion pride optimizer: An optimization algorithm inspired by lion pride behavior , 2012, Science China Information Sciences.

[90]  P. Dhavachelvan,et al.  A survey on nature inspired meta-heuristic algorithms with its domain specifications , 2016, 2016 International Conference on Communication and Electronics Systems (ICCES).

[91]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[92]  Juan J. Flores,et al.  Gravitational Interactions Optimization , 2011, LION.

[93]  Ali Husseinzadeh Kashan,et al.  League Championship Algorithm: A New Algorithm for Numerical Function Optimization , 2009, 2009 International Conference of Soft Computing and Pattern Recognition.

[94]  Tzanetos Alexandros,et al.  Nature Inspired Optimization Algorithms Related to Physical Phenomena and Laws of Science: A Survey , 2017 .

[95]  Raymond Chiong,et al.  Why Is Optimization Difficult? , 2009, Nature-Inspired Algorithms for Optimisation.

[96]  Richard A. Formato,et al.  CENTRAL FORCE OPTIMIZATION: A NEW META-HEURISTIC WITH APPLICATIONS IN APPLIED ELECTROMAGNETICS , 2007 .

[97]  Belal Al-Khateeb,et al.  The blue monkey: A new nature inspired metaheuristic optimization algorithm , 2019, Periodicals of Engineering and Natural Sciences (PEN).

[98]  Shah-HosseiniHamed Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation , 2011 .

[99]  Yongquan Zhou,et al.  A Novel Global Convergence Algorithm: Bee Collecting Pollen Algorithm , 2008, ICIC.

[100]  S. Deb,et al.  Elephant Herding Optimization , 2015, 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI).

[101]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[102]  Wansheng Tang,et al.  Monkey Algorithm for Global Numerical Optimization , 2008 .

[103]  Randal S. Olson,et al.  PMLB: a large benchmark suite for machine learning evaluation and comparison , 2017, BioData Mining.

[104]  J. Bishop Stochastic searching networks , 1989 .

[105]  H. R. E. H. Bouchekara,et al.  Optimal power flow using black-hole-based optimization approach , 2014, Appl. Soft Comput..

[106]  Ibrahim Aljarah,et al.  EvoloPy-FS: An Open-Source Nature-Inspired Optimization Framework in Python for Feature Selection , 2019, Algorithms for Intelligent Systems.

[107]  Guangjun Liao,et al.  2010 Second WRI Global Congress on Intelligent Systems , 2010 .

[108]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[109]  Yue Zhang,et al.  BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior , 2004, ANTS Workshop.

[110]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[111]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[112]  Nizamettin Aydin,et al.  An application of black hole algorithm and decision tree for medical problem , 2015, 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE).

[113]  Marc Parizeau,et al.  DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..

[114]  Yuanyang Zou,et al.  The whirlpool algorithm based on physical phenomenon for solving optimization problems , 2019, Engineering Computations.

[115]  Ali Kaveh,et al.  Water Evaporation Optimization , 2016 .

[116]  Hossam Faris,et al.  Harris hawks optimization: Algorithm and applications , 2019, Future Gener. Comput. Syst..

[117]  Mohammed Ali Tawfeeq Intelligent Algorithm for Optimum Solutions Based on the Principles of Bat Sonar , 2012, ArXiv.

[118]  Iztok Fister,et al.  Adaptation and Hybridization in Nature-Inspired Algorithms , 2015 .

[119]  Yujun Zheng Water wave optimization: A new nature-inspired metaheuristic , 2015, Comput. Oper. Res..

[120]  Seyed Mohammad Mirjalili,et al.  The Ant Lion Optimizer , 2015, Adv. Eng. Softw..

[121]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[122]  Husheng Wu,et al.  Wolf Pack Algorithm for Unconstrained Global Optimization , 2014 .

[123]  Abdelhakim Ameur El Imrani,et al.  Hurricane-based Optimization Algorithm , 2014 .

[124]  Jianhua Yang,et al.  Dolphin swarm algorithm , 2016, Frontiers of Information Technology & Electronic Engineering.

[125]  Xin-She Yang,et al.  Nature-Inspired Algorithms and Applied Optimization , 2018 .

[126]  Shinq-Jen Wu,et al.  A bio-inspired optimization for inferring interactive networks: Cockroach swarm evolution , 2015, Expert Syst. Appl..

[127]  Nikos D. Lagaros,et al.  Pity beetle algorithm - A new metaheuristic inspired by the behavior of bark beetles , 2018, Adv. Eng. Softw..

[128]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[129]  Zhengxin Chen Computational intelligence for decision support , 1999 .

[130]  Ardeshir Bahreininejad,et al.  Mine blast algorithm for optimization of truss structures with discrete variables , 2012 .

[131]  Leandro dos Santos Coelho,et al.  Meerkats-inspired Algorithm for Global Optimization Problems , 2018, ESANN.

[132]  Abdolreza Hatamlou,et al.  Heart: a novel optimization algorithm for cluster analysis , 2014, Progress in Artificial Intelligence.

[133]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[134]  Andrew Wirth,et al.  The Rationale Behind Seeking Inspiration from Nature , 2009, Nature-Inspired Algorithms for Optimisation.

[135]  A. Kaveh,et al.  A new optimization method: Dolphin echolocation , 2013, Adv. Eng. Softw..

[136]  Feng Zou,et al.  Optimal approximation of stable linear systems with a novel and efficient optimization algorithm , 2014, 2014 IEEE Congress on Evolutionary Computation (CEC).

[137]  Ismael Rodríguez,et al.  Using River Formation Dynamics to Design Heuristic Algorithms , 2007, UC.

[138]  Leandro dos Santos Coelho,et al.  Coyote Optimization Algorithm: A New Metaheuristic for Global Optimization Problems , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[139]  Michael O'Neill,et al.  Grammatical Evolution: Evolving Programs for an Arbitrary Language , 1998, EuroGP.

[140]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[141]  Hamed Shah-Hosseini,et al.  The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm , 2009, Int. J. Bio Inspired Comput..

[142]  Hossam Faris,et al.  EvoloPy: An Open-source Nature-inspired Optimization Framework in Python , 2016, IJCCI.

[143]  A. Kaveh,et al.  A novel meta-heuristic optimization algorithm: Thermal exchange optimization , 2017, Adv. Eng. Softw..

[144]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[145]  A. Kaveh,et al.  A new meta-heuristic method: Ray Optimization , 2012 .

[146]  Seyedali Mirjalili,et al.  SCA: A Sine Cosine Algorithm for solving optimization problems , 2016, Knowl. Based Syst..

[147]  Natalio Krasnogor,et al.  Nature‐inspired cooperative strategies for optimization , 2009, Int. J. Intell. Syst..

[148]  Dayang N. A. Jawawi,et al.  Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm , 2016, Swarm Evol. Comput..

[149]  Walmir M. Caminhas,et al.  Bee colonies as model for multimodal continuous optimization: The OptBees algorithm , 2012, 2012 IEEE Congress on Evolutionary Computation.

[150]  Ali Kaveh,et al.  Artificial Coronary Circulation System; A new bio-inspired metaheuristic algorithm , 2019, Scientia Iranica.

[151]  Erik Valdemar Cuevas Jiménez,et al.  A swarm optimization algorithm inspired in the behavior of the social-spider , 2013, Expert Syst. Appl..

[152]  Minghao Yin,et al.  Animal migration optimization: an optimization algorithm inspired by animal migration behavior , 2014, Neural Computing and Applications.

[153]  Ali Kaveh,et al.  Vibrating particles system algorithm for truss optimization with multiple natural frequency constraints , 2017 .

[154]  Fevrier Valdez,et al.  Modular Neural Networks architecture optimization with a new nature inspired method using a fuzzy combination of Particle Swarm Optimization and Genetic Algorithms , 2014, Information Sciences.

[155]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[156]  Abdelouahab Moussaoui,et al.  Penguins Search Optimization Algorithm (PeSOA) , 2013, IEA/AIE.

[157]  Xin-She Yang,et al.  Mathematical Analysis of Nature-Inspired Algorithms , 2018 .

[158]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[159]  Seyed Mohammad Mirjalili,et al.  Multi-Verse Optimizer: a nature-inspired algorithm for global optimization , 2015, Neural Computing and Applications.

[160]  Abdolreza Hatamlou,et al.  Black hole: A new heuristic optimization approach for data clustering , 2013, Inf. Sci..

[161]  Reza Akbari,et al.  A novel bee swarm optimization algorithm for numerical function optimization , 2010 .

[162]  Reza Moghdani,et al.  Volleyball Premier League Algorithm , 2018, Appl. Soft Comput..

[163]  Yong Wang,et al.  A New Stochastic Optimization Approach - Dolphin Swarm Optimization Algorithm , 2016, Int. J. Comput. Intell. Appl..