Liquid-gas transition and coexistence in ground-state bosons with spin twist

We study the thermodynamic liquid-gas transition and coexistence (LGTC) for ground-state bosons under contact interactions. We find that the LGTC can be facilitated by the mismatch of spin polarization, dubbed"spin twist,"between single-particle and interaction channels of bosons with spin degrees of freedom. Such a spin twist uniquely stabilizes the gas phase by creating an effective repulsion for low-density bosons, thereby enabling LGTC in the presence of a quantum droplet at a much larger density. We have demonstrated the scheme for binary bosons subject to Rabi coupling and magnetic detuning, where the liquid-gas transition can be conveniently tuned and their coexistence can be characterized by a discontinuous density profile in a harmonic trap. The spin twist scheme for LGTC can be generalized to a wide class of quantum systems with competing single-particle and interaction orders.

[1]  W. Yi,et al.  Quantum Criticality of Liquid-Gas Transition in a Binary Bose Mixture. , 2022, Physical review letters.

[2]  N. Parker,et al.  Quantum droplets in imbalanced atomic mixtures , 2022, Physical Review Research.

[3]  T. Bourdel,et al.  Tunable Three-Body Interactions in Driven Two-Component Bose-Einstein Condensates. , 2021, Physical review letters.

[4]  S. Reimann,et al.  Droplet-superfluid compounds in binary bosonic mixtures , 2021, Physical Review A.

[5]  N. Guebli,et al.  Quantum self-bound droplets in Bose-Bose mixtures: Effects of higher-order quantum and thermal fluctuations , 2021, Physical Review A.

[6]  A. Recati,et al.  Beyond-Mean-Field Effects in Rabi-Coupled Two-Component Bose-Einstein Condensate , 2021, Physical Review Letters.

[7]  J. Hutson,et al.  Lee-Huang-Yang effects in the ultracold mixture of Na23 and Rb87 with attractive interspecies interactions , 2021, Physical Review Research.

[8]  Trevor GrandPre,et al.  Phase Diagram of Active Brownian Spheres: Crystallization and the Metastability of Motility-Induced Phase Separation. , 2020, Physical review letters.

[9]  Jia Wang,et al.  Ultradilute self-bound quantum droplets in Bose–Bose mixtures at finite temperature* , 2020, 2010.14729.

[10]  L. Yin,et al.  Phonon stability and sound velocity of quantum droplets in a boson mixture , 2020, Physical Review B.

[11]  G. Astrakharchik,et al.  Beyond Lee-Huang-Yang description of self-bound Bose mixtures , 2020, 2005.10047.

[12]  A. Frölian,et al.  Interaction Control and Bright Solitons in Coherently Coupled Bose-Einstein Condensates. , 2019, Physical review letters.

[13]  B. Malomed,et al.  Modulational Instability, Inter-Component Asymmetry, and Formation of Quantum Droplets in One-Dimensional Binary Bose Gases , 2019, Symmetry.

[14]  M. Prevedelli,et al.  Observation of quantum droplets in a heteronuclear bosonic mixture , 2019, Physical Review Research.

[15]  G. Natale,et al.  Long-Lived and Transient Supersolid Behaviors in Dipolar Quantum Gases , 2019, Physical Review X.

[16]  T. Pfau,et al.  Transient Supersolid Properties in an Array of Dipolar Quantum Droplets , 2019, Physical Review X.

[17]  L. Santos,et al.  Observation of a Dipolar Quantum Gas with Metastable Supersolid Properties. , 2018, Physical review letters.

[18]  P. Cheiney,et al.  Bright Soliton to Quantum Droplet Transition in a Mixture of Bose-Einstein Condensates. , 2017, Physical review letters.

[19]  M. Modugno,et al.  Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. , 2017, Physical review letters.

[20]  P. Cheiney,et al.  Quantum liquid droplets in a mixture of Bose-Einstein condensates , 2018 .

[21]  H. Stoecker,et al.  van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD. , 2016, Physical review letters.

[22]  Tilman Pfau,et al.  Self-bound droplets of a dilute magnetic quantum liquid , 2016, Nature.

[23]  L. Santos,et al.  Quantum-Fluctuation-driven crossover from a dilute bose-einstein condensate to a macrodroplet in a dipolar quantum fluid , 2016, 1607.06613.

[24]  Tilman Pfau,et al.  Observation of Quantum Droplets in a Strongly Dipolar Bose Gas. , 2016, Physical review letters.

[25]  D. Petrov,et al.  Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. , 2015, Physical review letters.

[26]  Michael E. Cates,et al.  Motility-Induced Phase Separation , 2014, 1406.3533.

[27]  B. Malomed,et al.  Rabi flopping induces spatial demixing dynamics. , 2011, Physical review letters.

[28]  P.Wagner,et al.  Microscopic model approaches to fragmentation of nuclei and phase transitions in nuclear matter , 2000, nucl-th/0009023.

[29]  M. D. Miller,et al.  Liquid-to-gas phase transitions in two-dimensional quantum systems at zero temperature , 1978 .

[30]  L. H. Nosanow,et al.  Liquid-to-Gas Phase Transition in Quantum Systems at Zero Temperature , 1975 .

[31]  Kerson Huang Statistical Mechanics, 2nd Edition , 1963 .

[32]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[33]  I. Carusotto,et al.  Revealing the ferromagnetic phase transition in an extended two-component atomic superfluid , 2022 .

[34]  A. Budzanowski,et al.  1 7 F eb 2 00 3 Critical Temperature for the Nuclear Liquid-Gas Phase Transition , 2022 .

[35]  M. Grunwald Principles Of Condensed Matter Physics , 2016 .

[36]  E. M. Lifshitz,et al.  Statistical Physics, Part 1 (Third Edition) , 1981 .

[37]  L. Landau,et al.  statistical-physics-part-1 , 1958 .