An application of the Turán theorem to domination in graphs

A function f:V(G)->{+1,-1} defined on the vertices of a graph G is a signed dominating function if for any vertex v the sum of function values over its closed neighborhood is at least 1. The signed domination number@c"s(G) of G is the minimum weight of a signed dominating function on G. By simply changing ''{+1,-1}'' in the above definition to ''{+1,0,-1}'', we can define the minus dominating function and the minus domination number of G. In this note, by applying the Turan theorem, we present sharp lower bounds on the signed domination number for a graph containing no (k+1)-cliques. As a result, we generalize a previous result due to Kang et al. on the minus domination number of k-partite graphs to graphs containing no (k+1)-cliques and characterize the extremal graphs.

[1]  Jirí Matousek Lower bound on the minus-domination number , 2001, Discret. Math..

[2]  Xu Bao-gen On Minus Domination and Signed Domination in Graphs , 2003 .

[3]  Hye Kyung Kim,et al.  A Note on Graphs with Large Girth, Small Minus Domination Number , 1999, Discret. Appl. Math..

[4]  Michael A. Henning,et al.  Minus domination in regular graphs , 1996, Discret. Math..

[5]  Hye Kyung Kim,et al.  Minus domination number in k-partite graphs , 2004, Discret. Math..

[6]  Johannes H. Hattingh,et al.  The algorithmic complexity of signed domination in graphs , 1995, Australas. J Comb..

[7]  Michael A. Henning,et al.  Minus domination in graphs , 1999, Discret. Math..

[8]  Liying Kang,et al.  Upper minus domination in regular graphs , 2000, Discret. Math..

[9]  Peter Damaschke Minus domination in small-degree graphs , 2001, Discret. Appl. Math..

[10]  Weiping Shang,et al.  Upper minus domination in a claw-free cubic graph , 2006, Discret. Math..

[11]  P. Erdös On an extremal problem in graph theory , 1970 .

[12]  M. Cai,et al.  Minus domination number in cubic graph , 1998 .

[13]  Wayne Goddard,et al.  The Algorithmic Complexity of Minus Domination in Graphs , 1996, Discret. Appl. Math..

[14]  Liang Sun,et al.  On the Minus Domination Number of Graphs , 2004 .

[15]  T. C. Edwin Cheng,et al.  A note on domination and minus domination numbers in cubic graphs , 2005, Appl. Math. Lett..

[16]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[17]  龔欣如,et al.  Signed Domination in Block Graphs Signed Domination in Block Graphs , 2004 .

[18]  Jingzhong Mao,et al.  A proof of a conjecture of minus domination in graphs , 2002, Discret. Math..

[19]  Hong Qiao,et al.  Lower bounds on the minus domination and k-subdomination numbers , 2001, Theor. Comput. Sci..

[20]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.