The orphan G protein-coupled receptor 161 is required for left-right patterning.

[1]  M. Montecino,et al.  xRic‐8 is a GEF for Gsα and participates in maintaining meiotic arrest in Xenopus laevis oocytes , 2008, Journal of cellular physiology.

[2]  R. Korstanje,et al.  The orphan G protein-coupled receptor, Gpr161, encodes the vacuolated lens locus and controls neurulation and lens development , 2008, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D. Houston,et al.  Calcium fluxes in dorsal forerunner cells antagonize β-catenin and alter left-right patterning , 2007, Development.

[4]  S. Noselli,et al.  Strategies to establish left/right asymmetry in vertebrates and invertebrates. , 2007, Current opinion in genetics & development.

[5]  E. Krause,et al.  Activation of muscarinic receptors reduces store-operated Ca2+ entry in HEK293 cells. , 2007, Cellular signalling.

[6]  F. Rentzsch,et al.  Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. , 2007, Developmental biology.

[7]  Jau-Nian Chen,et al.  Na,K-ATPase α2 and Ncx4a regulate zebrafish left-right patterning , 2007 .

[8]  H. Baier,et al.  The g protein-coupled receptor agtrl1b regulates early development of myocardial progenitors. , 2007, Developmental cell.

[9]  A. R. Palmer,et al.  Left-right patterning from the inside out: widespread evidence for intracellular control. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[10]  T. Wilm,et al.  Apelin and its receptor control heart field formation during zebrafish gastrulation. , 2007, Developmental cell.

[11]  B. Neel,et al.  Genetic and cellular mechanisms of oncogenesis , 2007 .

[12]  Robert Geisler,et al.  Large-scale mapping of mutations affecting zebrafish development , 2007, BMC Genomics.

[13]  J. C. Belmonte,et al.  Regulation of primary cilia formation and left-right patterning in zebrafish by a noncanonical Wnt signaling mediator, duboraya , 2006, Nature Genetics.

[14]  A. Schier,et al.  Polycystin-2 immunolocalization and function in zebrafish. , 2006, Journal of the American Society of Nephrology : JASN.

[15]  E. Olson,et al.  The Mevalonate Pathway Controls Heart Formation in Drosophila by Isoprenylation of Gγ1 , 2006, Science.

[16]  H. Chen,et al.  Zebrafish G protein γ2 is required for VEGF signaling during angiogenesis , 2006 .

[17]  N. Hirokawa,et al.  Nodal Flow and the Generation of Left-Right Asymmetry , 2006, Cell.

[18]  J. Hepler,et al.  Cell signalling diversity of the Gqα family of heterotrimeric G proteins , 2006 .

[19]  T. Schwartz,et al.  Molecular mechanism of 7TM receptor activation--a global toggle switch model. , 2006, Annual review of pharmacology and toxicology.

[20]  M. Fishman,et al.  Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Nicoll,et al.  Mutation in sodium-calcium exchanger 1 (NCX1) causes cardiac fibrillation in zebrafish. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  I. Cohen,et al.  A Transgenic Mouse Model of Heart Failure Using Inducible Gαq* , 2005, Journal of Biological Chemistry.

[23]  I. Cohen,et al.  Gαq Inhibits Cardiac L-type Ca2+ Channels through Phosphatidylinositol 3-Kinase* , 2005, Journal of Biological Chemistry.

[24]  B. Appel,et al.  Inositol polyphosphates regulate zebrafish left-right asymmetry. , 2005, Developmental cell.

[25]  S. Coughlin,et al.  Essential role for Gα13 in endothelial cells during embryonic development , 2005 .

[26]  H. Hamm,et al.  Essential roles of Gα12/13 signaling in distinct cell behaviors driving zebrafish convergence and extension gastrulation movements , 2005, The Journal of cell biology.

[27]  H. Schiöth,et al.  The Repertoire of G-Protein–Coupled Receptors in Fully Sequenced Genomes , 2005, Molecular Pharmacology.

[28]  A. Schier,et al.  Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis , 2005, Development.

[29]  H. Yost,et al.  Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut , 2005, Development.

[30]  Mark S. Miller,et al.  A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney , 2004, Development.

[31]  Jing Zhou,et al.  Polycystins and mechanosensation in renal and nodal cilia , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[32]  P. Delmas Polycystins From Mechanosensation to Gene Regulation , 2004, Cell.

[33]  S. Shimeld Calcium turns sinister in left-right asymmetry. , 2004, Trends in genetics : TIG.

[34]  Alan Wise,et al.  The identification of ligands at orphan G-protein coupled receptors. , 2004, Annual review of pharmacology and toxicology.

[35]  J. C. Belmonte,et al.  Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination , 2004, Nature.

[36]  Lesilee S. Rose,et al.  Embryonic handedness choice in C. elegans involves the Gα protein GPA-16 , 2003 .

[37]  R. Baxendale,et al.  First messenger regulation of capacitation via G protein-coupled mechanisms: a tale of serendipity and discovery. , 2003, Molecular human reproduction.

[38]  D. Stainier,et al.  A Cellular Framework for Gut-Looping Morphogenesis in Zebrafish , 2003, Science.

[39]  J. Fetcho,et al.  Mutations in deadly seven/notch1a Reveal Developmental Plasticity in the Escape Response Circuit , 2003, The Journal of Neuroscience.

[40]  F. Hsieh,et al.  Germ‐line transmission of a myocardium‐specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[41]  T. Strachan,et al.  Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination , 2003, Nature Genetics.

[42]  M. Brueckner,et al.  Two Populations of Node Monocilia Initiate Left-Right Asymmetry in the Mouse , 2003, Cell.

[43]  M. Rebagliati,et al.  The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry , 2003, Development.

[44]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[45]  Andrew L. Miller,et al.  Imaging intercellular calcium waves during late epiboly in intact zebrafish embryos , 2003, Zygote.

[46]  M. Mortrud,et al.  The G protein-coupled receptor repertoires of human and mouse , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  A. Davenport,et al.  Emerging roles for orphan G-protein-coupled receptors in the cardiovascular system. , 2002, Trends in pharmacological sciences.

[48]  P. Ma,et al.  Value of novelty? , 2002, Nature Reviews Drug Discovery.

[49]  Y. Oda,et al.  In Vivo Imaging of Functional Inhibitory Networks on the Mauthner Cell of Larval Zebrafish , 2002, The Journal of Neuroscience.

[50]  S. Korsching,et al.  Odorant Feature Detection: Activity Mapping of Structure Response Relationships in the Zebrafish Olfactory Bulb , 2001, The Journal of Neuroscience.

[51]  S. Coughlin,et al.  A Role for Thrombin Receptor Signaling in Endothelial Cells During Embryonic Development , 2001, Science.

[52]  Jaak Vilo,et al.  Prediction of the coupling specificity of G protein coupled receptors to their G proteins , 2001, ISMB.

[53]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[54]  J. Dowling,et al.  Small molecule developmental screens reveal the logic and timing of vertebrate development. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[55]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[56]  H. Yost,et al.  Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. , 2000, Development.

[57]  D. Stainier,et al.  A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development , 2000, Nature.

[58]  Robert Geisler,et al.  Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation , 2000, Nature.

[59]  A. Amsterdam,et al.  A large-scale insertional mutagenesis screen in zebrafish. , 1999, Genes & development.

[60]  S. Horne,et al.  Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. , 1999, Developmental biology.

[61]  L. F. Kolakowski,et al.  Novel GPCRs and their endogenous ligands: expanding the boundaries of physiology and pharmacology. , 1999, Trends in pharmacological sciences.

[62]  P. Ingham,et al.  Regulation of left-right asymmetries in the zebrafish by Shh and BMP4. , 1999, Developmental biology.

[63]  C. Nüsslein-Volhard,et al.  fork head domain genes in zebrafish , 1998, Development Genes and Evolution.

[64]  Rainer W Friedrich,et al.  Genetic Analysis of Vertebrate Sensory Hair Cell Mechanosensation: the Zebrafish Circler Mutants , 1998, Neuron.

[65]  C. Nüsslein-Volhard,et al.  Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. , 1997, Development.

[66]  Stefan Offermanns,et al.  Vascular System Defects and Impaired Cell Chemokinesis as a Result of Gα13 Deficiency , 1997, Science.

[67]  D A Kane,et al.  The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. , 1996, Development.

[68]  Yen-Hong Kao,et al.  Imaging the Functional Organization of Zebrafish Hindbrain Segments during Escape Behaviors , 1996, Neuron.

[69]  M. Fishman,et al.  Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. , 1996, Development.

[70]  A. Schier,et al.  A genetic screen for mutations affecting embryogenesis in zebrafish. , 1996, Development.

[71]  J. Fetcho,et al.  Labeling blastomeres with a calcium indicator: a non-invasive method of visualizing neuronal activity in zebrafish , 1996, Journal of Neuroscience Methods.

[72]  N. Allbritton,et al.  Localized calcium signals in early zebrafish development. , 1995, Developmental biology.

[73]  Jau-Nian Chen,et al.  Na,K-ATPase alpha2 and Ncx4a regulate zebrafish left-right patterning. , 2007, Development.

[74]  Jasper E. Humbert,et al.  Zebrafish G protein gamma2 is required for VEGF signaling during angiogenesis. , 2006, Blood.

[75]  I. Cohen,et al.  A transgenic mouse model of heart failure using inducible Galpha q. , 2005, Journal of Biological Chemistry.

[76]  I. Cohen,et al.  Galpha q inhibits cardiac L-type Ca2+ channels through phosphatidylinositol 3-kinase. , 2005, Journal of Biological Chemistry.

[77]  C. Tabin,et al.  A two-cilia model for vertebrate left-right axis specification. , 2003, Genes & development.

[78]  Lesilee S. Rose,et al.  Embryonic handedness choice in C. elegans involves the Galpha protein GPA-16. , 2003, Development.

[79]  B. Kobilka,et al.  G protein-coupled receptors: functional and mechanistic insights through altered gene expression. , 1998, Physiological reviews.

[80]  Stavros J. Hamodrakas,et al.  Bioinformatics Original Paper Prediction of the Coupling Specificity of Gpcrs to Four Families of G-proteins Using Hidden Markov Models and Artificial Neural Networks , 2022 .