Centralized and decentralized control schemes for Gauss-Poisson processes

Gauss-Poisson processes are defined as jump processes with jump times according to a Poisson process and Gaussian jump size. Filtering and prediction recursive schemes are obtained and used in the derivation of optimal control schemes. Dynamic programming sufficient conditions are given for both centralized and delayed information sharing decentralized schemes. For the linear quadratic model, we derive explicit solutions for the optimal control.

[1]  R. Sivan,et al.  Linear-quadratic-gaussian control with one-step-delay sharing pattern , 1974 .

[2]  W. Wonham On the Separation Theorem of Stochastic Control , 1968 .

[3]  T. Kailath,et al.  An innovations approach to least-squares estimation--Part II: Linear smoothing in additive white noise , 1968 .

[4]  Y. Ho,et al.  Team decision theory and information structures in optimal control problems--Part II , 1972 .

[5]  Adrian Segall,et al.  Stochastic processes in estimation theory , 1976, IEEE Trans. Inf. Theory.

[6]  M. Aoki,et al.  On decentralized linear stochastic control problems with quadratic cost , 1973 .

[7]  Donald L. Snyder,et al.  A separation theorem for stochastic control problems with point-process observations , 1977, Autom..

[8]  H. Witsenhausen A Counterexample in Stochastic Optimum Control , 1968 .

[9]  Thomas Kailath,et al.  Nonlinear filtering with counting observations , 1975, IEEE Trans. Inf. Theory.

[10]  Donald L. Snyder,et al.  How to track a swarm of fireflies by observing their flashes (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[11]  Adrian Segall,et al.  The Modeling of Adaptive Routing in Data-Communication Networks , 1977, IEEE Trans. Commun..

[12]  Thomas Kailath,et al.  The modeling of randomly modulated jump processes , 1975, IEEE Trans. Inf. Theory.

[13]  R. Radner,et al.  Team Decision Problems , 1962 .

[14]  H. Witsenhausen Separation of estimation and control for discrete time systems , 1971 .

[15]  M. Athans,et al.  Solution of some nonclassical LQG stochastic decision problems , 1974 .

[16]  Michael. Athans,et al.  TRENDS IN MODERN SYSTEM THEORY , 1976 .

[17]  A. Segall Optimal control of noisy finite-state Markov processes , 1977 .