Global variability of daily total suspended solids and their fluxes in rivers

The daily variability of river suspended sediment concentration (Cs) and related yield (Y) is studied at 60 global stations. The data set covers natural conditions (e.g. pre-reservoir data), ranging from the humid tropics to subarctic and arid regions, located in all types of relief (yearly runoff q* from 0.1 to 55 l s � 1 km � 2 ). Basin area ranges from 64 km 2 to 3.2 million km 2 . Survey lengths range from 1 to 20 years with a median of 3 years. Median values (Cs50, q50, Y50) and discharge-weighted averages for Cs* and Y* range from 5 to 29000 mg l � 1 and 10 to 5000 kg km � 2 day � 1 , respectively. A set of indicators of variability are proposed for sediment concentration, water and sediment discharges including mean to median ratios (Cs*/Cs50, Y*/Y50), the percentage of sediment flux discharged in 2% of time (Ms2), the percentage of time necessary to carry half of the sediment flux (Ts50), and quantiles of Cs, q and Y distributions corresponding to the discharge-weighted averages. Since most of the sediment flux is discharged in less than 25% of the time, ‘‘truncated rating curves’’ metrics are proposed between the Cs vs. q relationship for periods of high flux. Temporal variability decreases with increasing basin size, lake abundance, and is higher for basins influenced by glaciermelt and snowmelt. The least variable sediment flux regimes are noted for the Mississippi at its mouth, the Rhone Lacustre, the St. Lawrence and the Somme, a medium-sized French phreatic river. The most variable flux regimes were for small- to mediumsized basins (i.e. <1000 to 10000 km 2 ) such as steep Andean Bolivian basins, Thai basins, the Eel (CA) and Walla Walla (OR) rivers. A proposed global scale typology is based on six classes key variability indicators. D 2003 Elsevier Science B.V. All rights reserved.

[1]  T. Dunne,et al.  Sediment yield and land use in tropical catchments , 1979 .

[2]  Robert F. Stallard,et al.  Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial , 1998 .

[3]  Jiongxin Xu A study of physico-geographical factors for formation of hyperconcentrated flows in the Loess Plateau of China , 1998 .

[4]  S. Love Quality of surface waters of Alaska, 1961-63 , 1965 .

[5]  C. Vörösmarty,et al.  Anthropogenic Disturbance of the Terrestrial Water Cycle , 2000 .

[6]  E. A. Dardeau,et al.  Historic Trends in the Sediment Flow Regime of the Mississippi River , 1986 .

[7]  M. Wolman,et al.  Magnitude and Frequency of Forces in Geomorphic Processes , 1960, The Journal of Geology.

[8]  Desmond E. Walling Linking land use, erosion and sediment yields in river basins , 1999 .

[9]  H. Etcheber,et al.  Assessment of suspended matter input into the oceans by small mountainous coastal rivers: the case of the Bay of Biscay , 1999 .

[10]  P. Pinet,et al.  Continental erosion and large‐scale relief , 1988 .

[11]  W. Ludwig,et al.  River sediment discharge to the oceans: present-day controls and global budgets , 1998 .

[12]  Gil Mahé,et al.  Spatiotemporal variations in hydrological regimes within Central Africa during the XXth century , 2001 .

[13]  J. Guyot Hydrogéochimie des fleuves de l'Amazonie bolivienne , 1992 .

[14]  C. Vörösmarty,et al.  Anthropogenic sediment retention: major global impact from registered river impoundments , 2003 .

[15]  D. Walling The sediment delivery problem , 1983 .

[16]  J. Bricquet,et al.  Transport de matiere sur les grands fleuves des regions intertropicales: les premiers resultats des mesures de flux particulaires , 1988 .

[17]  Janusz Dominik,et al.  Evolution of the Upper Rhone River discharge and suspended sediment load during the last 80 years and some implications for Lake Geneva , 2000, Aquatic Sciences.

[18]  R. H. Meade,et al.  World-Wide Delivery of River Sediment to the Oceans , 1983, The Journal of Geology.

[19]  C. Vörösmarty Global change, the water cycle, and our search for Mauna Loa , 2002 .

[20]  N. Prat,et al.  Changes in the hydrology and sediment transport produced by large dams on the lower Ebro river and its estuary , 1996 .

[21]  P. R. Boucher Sediment transport by streams in the Palouse River basin, Washington and Idaho, July 1961-June 1965 , 1970 .

[22]  John N. Holeman The Sediment Yield of Major Rivers of the World , 1968 .

[23]  U. Förstner,et al.  General Relationship between Suspended Sediment Concentration and Water Discharge in the Alpenrhein and some other Rivers , 1968, Nature.

[24]  G. Williams Sediment concentration versus water discharge during single hydrologic events in rivers , 1989 .

[25]  F. Fournier TRANSPORTS SOLIDES EFFECTUÉS PAR LES COURS D'EAU: Résultats, au 1-8-1967, de l'enquête sur les données acquises avant la Décennie Hydrologique Internationale , 1969 .

[26]  R. Robarts,et al.  Critical analysis of water quality monitoring in the Russian Federation and former Soviet Union. , 2000 .

[27]  B. Hay Sediment and water discharge rates of Turkish Black Sea rivers before and after hydropower dam construction , 1994 .

[28]  Wolfgang Ludwig,et al.  Predicting the oceanic input of organic carbon by continental erosion , 1996 .

[29]  B. Fekete,et al.  The potential impact of neo-Castorization on sediment transport by the global network of rivers , 1997 .

[30]  J. Holden,et al.  The storage and aging of continental runoff in large reservoir systems of the world , 1997 .

[31]  J. Syvitski,et al.  Estimating river-sediment discharge to the ocean: application to the Eel margin, northern California , 1999 .

[32]  F. Fournier Climat et Erosion , 1961 .

[33]  Michel Meybeck,et al.  A New Typology for Mountains and Other Relief Classes , 2001 .

[34]  M. Meybeck Carbon, nitrogen, and phosphorus transport by world rivers , 1982 .

[35]  M. Meybeck,et al.  The quality of rivers: From pristine stage to global pollution , 1989 .

[36]  D. Nash Effective Sediment-Transporting Discharge from Magnitude-Frequency Analysis , 1994, The Journal of Geology.

[37]  J. Gat,et al.  Physics and Chemistry of Lakes , 1995 .

[38]  J. Guyot,et al.  Dissolved solids and suspended sediment yields in the Rio Madeira basin, from the Bolivian Andes to the Amazon , 1996 .

[39]  Charles J Vörösmarty,et al.  Global system of rivers: Its role in organizing continental land mass and defining land‐to‐ocean linkages , 2000 .

[40]  D. F. Ritter,et al.  Rates of regional denudation in the United States , 1964 .

[41]  Deborah V. Chapman,et al.  Water Quality Assessments , 1992 .

[42]  C. Nilsson,et al.  Fragmentation and Flow Regulation of River Systems in the Northern Third of the World , 1994, Science.

[43]  D. Chapman The Use of Particulate Material , 1996 .

[44]  C. T. Haan,et al.  8 – Erosion and Sediment Yield , 1994 .

[45]  U. Förstner,et al.  Sedimenttransport im Mündungsgebiet des Alpenrheins , 1968 .

[46]  D. Evelyne Thèse de doctorat d'Etat , 1988 .

[47]  C. Picouet Géodynamique d'un hydrosystème tropical peu anthropisé : le bassin supérieur du Niger et son delta inférieur , 1999 .

[48]  Charles J Vörösmarty,et al.  Geomorphometric attributes of the global system of rivers at 30-minute spatial resolution , 2000 .

[49]  F. Forel Le Léman : monographie limnologique , 1892 .

[50]  P. Gagnon,et al.  Budget and sources of suspended sediment transported in the St. Lawrence River, Canada , 2000 .

[51]  J. Syvitski,et al.  Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers , 1992, The Journal of Geology.

[52]  I. Jansen,et al.  Predicting sediment yield from climate and topography , 1974 .

[53]  E. Baroudy,et al.  A water quality assessment of the former Soviet Union , 1998 .