A 3.8-V earth-abundant sodium battery electrode

[1]  L. Manceron,et al.  A combined experimental and theoretical study of the Ti2 + N2O reaction. , 2014, The journal of physical chemistry. A.

[2]  A. Yamada,et al.  General Observation of Fe3+/Fe2+ Redox Couple Close to 4 V in Partially Substituted Li2FeP2O7 Pyrophosphate Solid-Solution Cathodes. , 2013 .

[3]  A. Yamada,et al.  Phase Diagram of Olivine NaxFePO4 (0 < x < 1) , 2013 .

[4]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[5]  Ramazan Kahraman,et al.  Na2FeP2O7 as a Promising Iron‐Based Pyrophosphate Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical Study , 2013 .

[6]  Gustaaf Van Tendeloo,et al.  Preparation, structure, and electrochemistry of layered polyanionic hydroxysulfates: LiMSO4OH (M = Fe, Co, Mn) electrodes for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[7]  本間剛,et al.  Na 2 FeP 2 O 7 結晶化ガラス正極の創製とナトリウムイオン電池特性 , 2013 .

[8]  Shin-ichi Nishimura,et al.  High-voltage pyrophosphate cathode: insights into local structure and lithium-diffusion pathways. , 2012, Angewandte Chemie.

[9]  Yuki Yamada,et al.  Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries , 2012 .

[10]  Jean-Marie Tarascon,et al.  Li2Fe(SO4)2 as a 3.83 V positive electrode material , 2012 .

[11]  Dong-Hwa Seo,et al.  New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study. , 2012, Journal of the American Chemical Society.

[12]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[13]  Yuki Yamada,et al.  Polymorphs of LiFeSO4F as cathode materials for lithium ion batteries - a first principle computational study. , 2012, Physical chemistry chemical physics : PCCP.

[14]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[15]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[16]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[17]  J. Tarascon,et al.  A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. , 2011, Nature materials.

[18]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[19]  C. Delmas,et al.  NaMnFe2(PO4)3 Alluaudite Phase: Synthesis, Structure, and Electrochemical Properties As Positive Electrode in Lithium and Sodium Batteries. , 2010 .

[20]  P. Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4. , 2010 .

[21]  A. Yamada,et al.  New lithium iron pyrophosphate as 3.5 V class cathode material for lithium ion battery. , 2010, Journal of the American Chemical Society.

[22]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[23]  M. Armand,et al.  Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. , 2010, Inorganic chemistry.

[24]  M. Armand,et al.  Synthesis, Structural, and Transport Properties of Novel Bihydrated Fluorosulphates NaMSO4F·2H2O (M = Fe, Co, and Ni) , 2010 .

[25]  Jean-Marie Tarascon,et al.  Is lithium the new gold? , 2010, Nature chemistry.

[26]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[27]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[28]  Stefan Adams,et al.  From bond valence maps to energy landscapes for mobile ions in ion-conducting solids , 2006 .

[29]  S. Okada,et al.  Layered Transition Metal Oxides as Cathodes for Sodium Secondary Battery , 2006 .

[30]  Masao Yonemura,et al.  Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.

[31]  V. Favre-Nicolin,et al.  FOX, `free objects for crystallography': a modular approach to ab initio structure determination from powder diffraction , 2002 .

[32]  S. Adams Relationship between bond valence and bond softness of alkali halides and chalcogenides. , 2001, Acta crystallographica. Section B, Structural science.

[33]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[34]  M. Deem,et al.  A biased Monte Carlo scheme for zeolite structure solution , 1998, cond-mat/9809085.

[35]  S. Okada,et al.  Iron complex cathodes , 1997 .

[36]  John B. Goodenough,et al.  Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation. , 1997 .

[37]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[40]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[41]  John B. Goodenough,et al.  Lithium insertion into Fe2(SO4)3 frameworks , 1989 .

[42]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[43]  John B. Goodenough,et al.  LixCoO2 (0, 1981 .

[44]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[45]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[46]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.