Modeling of nanoscale solar cells: The Green's function formalism

Solar cells incorporating nano-structures represent a promising solution to overtake the Schockley-Queisser limit. On the other hand, the non-equilibrium Green's function formalism provides a sound conceptual basis for the development of quantum simulators that are needed for nanoscale devices. While this approach has already been applied to solar cells, it remains unfamiliar to most photovoltaic physicists. In this paper we show the main concepts of this formalism and illustrate it with a simple 1D model of solar cell. This model is applied to a thin film GaAs solar cell. Our investigations permit to show and analyze current flowing in the solar cell at the nanometer scale.

[1]  M. Anantram,et al.  Role of scattering in nanotransistors , 2002, cond-mat/0211069.

[2]  U. Aeberhard Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism , 2011, 1206.2671.

[3]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[4]  U. Aeberhard,et al.  Microscopic nonequilibrium theory of quantum well solar cells , 2007, 0709.4131.

[5]  R. Landauer,et al.  Conductance determined by transmission: probes and quantised constriction resistance , 1989 .

[6]  A. Verma,et al.  Optoelectronic response calculations in the framework of k.p coupled to Non-equilibrium Green's functions for 1D systems in the ballistic limit , 2013, 1307.0580.

[7]  M. Anantram,et al.  Two-dimensional quantum mechanical modeling of nanotransistors , 2001, cond-mat/0111290.

[8]  Transport and noise in resonant tunneling diode using self-consistent Green's function calculation , 2006, cond-mat/0601517.

[9]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[10]  Martin A. Green,et al.  Third generation photovoltaics: solar cells for 2020 and beyond , 2002 .

[11]  H. Kosina,et al.  Computational study of carbon-based electronics , 2009 .

[12]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[13]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[14]  S. Denbaars,et al.  Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells , 2012 .

[15]  Sebastian Steiger,et al.  Modelling nano-LEDs , 2009 .

[16]  M. Bescond,et al.  Multiband quantum transport simulations of ultimate p-type double-gate transistors: Influence of the channel orientation , 2010 .

[17]  S. Datta Nanoscale device modeling: the Green’s function method , 2000 .