Experimental investigation of Markovian and non-Markovian channel addition

The study of memory effects in quantum channels helps in developing characterization methods for open quantum systems and strategies for quantum error correction. Two main sets of channels exist, corresponding to system dynamics with no memory (Markovian) and with memory (non-Markovian). Interestingly, these sets have a non-convex geometry, allowing one to form a channel with memory from the addition of memoryless channels and vice-versa. Here, we experimentally investigate this non-convexity in a photonic setup by subjecting a single qubit to a convex combination of Markovian and non-Markovian channels. We use both divisibility and distinguishability as criteria for the classification of memory effects, with associated measures. Our results highlight some practical considerations that may need to be taken into account when using memory criteria to study system dynamics given by the addition of Markovian and non-Markovian channels in experiments.

[1]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .

[2]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[3]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[4]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[5]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[6]  Hong,et al.  Experimental realization of a localized one-photon state. , 1986, Physical review letters.

[7]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[8]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[9]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[10]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[11]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[12]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[13]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[14]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[15]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[16]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[17]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[18]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[19]  G. Vallone,et al.  Experimental quantum process tomography of non-trace-preserving maps , 2010, 1008.5334.

[20]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[21]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[22]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.

[23]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[24]  A. Rajagopal,et al.  Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms , 2010, 1007.4498.

[25]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[26]  Elsi-Mari Laine,et al.  Markovianity and non-Markovianity in quantum and classical systems , 2011, 1106.0138.

[27]  Robert Prevedel,et al.  Optimal linear optical implementation of a single-qubit damping channel , 2011, 1109.2070.

[28]  Rainer Kaltenbaek,et al.  Linear-Optics Realization of Channels for Single-Photon Multimode Qudits , 2010, 1012.3474.

[29]  G. Guo,et al.  Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems , 2011, 1109.2677.

[30]  Mauro Paternostro,et al.  Linear Optics Simulation of Quantum Non-Markovian Dynamics , 2012, Scientific Reports.

[31]  S. Luo,et al.  Quantifying non-Markovianity via correlations , 2012 .

[32]  P. Zoller,et al.  Engineered Open Systems and Quantum Simulations with Atoms and Ions , 2012, 1203.6595.

[33]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[34]  Guang-Can Guo,et al.  Measuring non-Markovianity of processes with controllable system-environment interaction , 2011, 1109.2438.

[35]  Guang-Can Guo,et al.  Experimental recovery of quantum correlations in absence of system-environment back-action , 2013, Nature Communications.

[36]  M. Paternostro,et al.  Geometrical characterization of non-Markovianity , 2013, 1302.6673.

[37]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[38]  S. Maniscalco,et al.  DYNAMICS OF QUANTUM CORRELATIONS IN TWO-QUBIT SYSTEMS WITHIN NON-MARKOVIAN ENVIRONMENTS , 2012, 1205.6419.

[39]  S. Maniscalco,et al.  Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective , 2014, Scientific Reports.

[40]  Filip A. Wudarski,et al.  Non-Markovianity degree for random unitary evolution , 2014 .

[41]  V. Giovannetti,et al.  Quantum channels and memory effects , 2012, 1207.5435.

[42]  Barry C. Sanders,et al.  Quantum circuit design for accurate simulation of qudit channels , 2014, 1407.7251.

[43]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[44]  F. Brito,et al.  A knob for Markovianity , 2014, 1404.2502.

[45]  Rosario Lo Franco,et al.  Harnessing non-Markovian quantum memory by environmental coupling , 2015, 1506.08293.

[46]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2015, 1511.06994.

[47]  Zhong-Xiao Man,et al.  Non-Markovian dynamics of a two-level system in the presence of hierarchical environments. , 2015, Optics express.

[48]  S. Pádua,et al.  Experimental simulation of decoherence in photonics qudits , 2015, Scientific Reports.

[49]  Fabio Sciarrino,et al.  Experimental observation of weak non-Markovianity , 2015, Scientific Reports.

[50]  Jian-Wei Pan,et al.  Universal digital photonic single-qubit quantum channel simulator , 2015 .

[51]  L. Aolita,et al.  Open-system dynamics of entanglement:a key issues review , 2014, Reports on progress in physics. Physical Society.

[52]  Matteo A. C. Rossi,et al.  All-optical quantum simulator of qubit noisy channels , 2016, 1612.06742.

[53]  F. Wudarski,et al.  Markovian semigroup from non-Markovian evolutions , 2016, 1603.00680.

[54]  Francesco Petruccione,et al.  Robustness and fragility of Markovian dynamics in a qubit dephasing channel , 2016, 1611.07322.

[55]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[56]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2017 .

[57]  H. Breuer,et al.  Mixing-induced quantum non-Markovianity and information flow , 2017, 1712.06719.

[58]  Dariusz Chruściński,et al.  Eternal non-Markovianity: from random unitary to Markov chain realisations , 2016, Scientific Reports.

[59]  J. Rarity,et al.  Experimental demonstration of a measurement-based realisation of a quantum channel , 2017, 1705.03032.

[60]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[61]  J. Piilo,et al.  Divisibility of quantum dynamical maps and collision models , 2017, 1708.04994.

[62]  Barry C. Sanders,et al.  Experimental quantum channel simulation , 2015, 1505.02879.

[63]  Subhashis Banerjee,et al.  Non-Markovian dephasing and depolarizing channels , 2018, Physical Review A.

[64]  G. Yocky,et al.  Decoherence , 2018, Principles of Quantum Computation and Information.

[65]  Yongbao Sun,et al.  Experimental implementation of fully controlled dephasing dynamics and synthetic spectral densities , 2017, Nature Communications.

[66]  Li Li,et al.  Concepts of quantum non-Markovianity: A hierarchy , 2017, Physics Reports.

[67]  Thomas Frauenheim,et al.  Operational Markov Condition for Quantum Processes. , 2018, Physical review letters.

[68]  D. Dong,et al.  Detecting non-Markovianity via quantified coherence: theory and experiments , 2019, 1903.03359.

[69]  Kavan Modi,et al.  Non-Markovian memory in IBMQX4. , 2019, 1902.07980.

[70]  M. Kim,et al.  Completely Positive Divisibility Does Not Mean Markovianity. , 2019, Physical review letters.

[71]  Todd A. Brun,et al.  Quantifying non-Markovianity: a quantum resource-theoretic approach , 2019, 1903.03880.

[72]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.