Lymphatic vessels: an emerging actor in atherosclerotic plaque development

Atherosclerosis is a chronic inflammatory disease of large‐ to medium‐sized arteries and is the main underlying cause of death worldwide. The lymphatic vasculature is critical for processes that are intimately linked to atherogenesis such as the immune response and cholesterol metabolism. However, whether lymphatic vessels truly contribute to the pathogenesis of atherosclerosis is less clear despite increasing research efforts in this field.

[1]  R. Virmani,et al.  Biomechanical factors in atherosclerosis: mechanisms and clinical implications. , 2014, European heart journal.

[2]  M. Bochaton-Piallat,et al.  Smooth muscle cell phenotypic switch: implications for foam cell formation , 2014, Current opinion in lipidology.

[3]  Jason L. Johnson Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis. , 2014, Cardiovascular research.

[4]  M. Simons,et al.  Vasa Vasorum in Normal and Diseased Arteries , 2014, Circulation.

[5]  K. Alitalo,et al.  Lymphatic Vessel Insufficiency in Hypercholesterolemic Mice Alters Lipoprotein Levels and Promotes Atherogenesis , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[6]  R. Ji Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis. , 2014, Cancer letters.

[7]  T. Petrova,et al.  Connexins in lymphatic vessel physiology and disease , 2014, FEBS letters.

[8]  A. Orekhov,et al.  Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis , 2014, Front. Physiol..

[9]  G. Randolph,et al.  Lymphatic transport of high-density lipoproteins and chylomicrons. , 2014, The Journal of clinical investigation.

[10]  G. Vanhoutte,et al.  Elastin fragmentation in atherosclerotic mice leads to intraplaque neovascularization, plaque rupture, myocardial infarction, stroke, and sudden death , 2014, European heart journal.

[11]  Zhiwei Wang,et al.  Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. , 2013, Biochimica et biophysica acta.

[12]  J. Bereiter-Hahn,et al.  Vascular endothelial growth factor C-induced lymphangiogenesis decreases tumor interstitial fluid pressure and tumor. , 2013, Translational oncology.

[13]  P. Libby,et al.  Immune effector mechanisms implicated in atherosclerosis: from mice to humans. , 2013, Immunity.

[14]  P. Libby,et al.  Local proliferation dominates lesional macrophage accumulation in atherosclerosis , 2013, Nature Medicine.

[15]  Robert Bittman,et al.  Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. , 2013, The Journal of clinical investigation.

[16]  Erling Falk,et al.  Update on acute coronary syndromes: the pathologists' view. , 2013, European heart journal.

[17]  T. Lüscher,et al.  Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. , 2013, The Journal of clinical investigation.

[18]  F. Nedel,et al.  Tumor angiogenesis and lymphangiogenesis: tumor/endothelial crosstalk and cellular/microenvironmental signaling mechanisms. , 2013, Life sciences.

[19]  F. Path,et al.  Critical sequences of phenomena in the progression of atherosclerotic lesions, with reference to the role of microvessels. , 2012, Medical hypotheses.

[20]  S. Cai,et al.  Tumor‐associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer , 2012, Journal of surgical oncology.

[21]  Grzegorz Chodaczek,et al.  Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis. , 2012, The Journal of clinical investigation.

[22]  A. Szuba,et al.  Adventitial lymphatics and atherosclerosis. , 2012, Lymphology.

[23]  Zahi A Fayad,et al.  Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. , 2012, Circulation.

[24]  C. Weber,et al.  Atherosclerosis: current pathogenesis and therapeutic options , 2011, Nature Medicine.

[25]  E. Falk,et al.  Stabilisation of atherosclerotic plaques , 2011, Thrombosis and Haemostasis.

[26]  S. Ylä-Herttuala,et al.  Lymphatic vasculature is increased in heart valves, ischaemic and inflamed hearts and in cholesterol‐rich and calcified atherosclerotic lesions , 2011, European journal of clinical investigation.

[27]  A. Tedgui,et al.  Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets , 2011, Nature Reviews Cardiology.

[28]  Jean-Baptiste Michel,et al.  Intraplaque haemorrhages as the trigger of plaque vulnerability , 2011, European heart journal.

[29]  G. Hansson,et al.  The immune system in atherosclerosis , 2011, Nature Immunology.

[30]  Sai T Reddy,et al.  Hypercholesterolemic mice exhibit lymphatic vessel dysfunction and degeneration. , 2009, The American journal of pathology.

[31]  Fuhai Li,et al.  Aortic adventitial angiogenesis and lymphangiogenesis promote intimal inflammation and hyperplasia. , 2009, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology.

[32]  M. Daemen,et al.  Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis , 2009, The Journal of pathology.

[33]  A. Szuba,et al.  Adventitial lymphatics of internal carotid artery in healthy and atherosclerotic vessels. , 2009, Folia histochemica et cytobiologica.

[34]  G. Randolph Emigration of monocyte-derived cells to lymph nodes during resolution of inflammation and its failure in atherosclerosis , 2008, Current opinion in lipidology.

[35]  L. Coussens,et al.  Distinctive features of angiogenesis and lymphangiogenesis determine their functionality during de novo tumor development. , 2007, Cancer research.

[36]  A. J. Miller,et al.  The absence of lymphatics in normal and atherosclerotic coronary arteries in man: a morphologic study. , 2006, Lymphology.

[37]  Y. Yonemitsu,et al.  Angiogenesis and lymphangiogenesis and expression of lymphangiogenic factors in the atherosclerotic intima of human coronary arteries. , 2005, Human pathology.

[38]  E. Fisher,et al.  Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Detmar,et al.  The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. , 2002, Genes & development.

[40]  Christopher K. Glass,et al.  Atherosclerosis The Road Ahead , 2001, Cell.

[41]  A. J. Miller,et al.  The morphology of the lymphatics of the coronary arteries in the dog. , 1999, Lymphology.

[42]  H. Jellinek,et al.  Coronary arteriopathy after lymphatic blockade: an experimental study in dogs. , 1994, Lymphology.

[43]  G. Sacchi,et al.  Histological framework of lymphatic vasa vasorum of major arteries: an experimental study. , 1990, Lymphology.

[44]  V. Bérczi,et al.  Effect of two week lymphatic occlusion on the mechanical properties of dog femoral arteries. , 1989, Atherosclerosis.

[45]  H. Jellinek,et al.  Role of the altered transmural permeability in the pathomechanism of arteriosclerosis. History of arteriosclerosis theories. Role of the altered permeability in experimental arteriosclerosis models. , 1986, Pathology, research and practice.

[46]  H. Jellinek,et al.  Role of the altered transmural permeability in the pathomechanism of arteriosclerosis. In 2 parts. Part I.: History of arteriosclerosis theories , 1986 .

[47]  H. Jellinek,et al.  Ultrastructural study of canine aortic damage caused by disturbance of transmural transport. , 1986, Experimental and molecular pathology.

[48]  F. H. Sims,et al.  A comparison of coronary and internal mammary arteries and implications of the results in the etiology of arteriosclerosis. , 1983, American heart journal.

[49]  B. Kaye,et al.  The role of lymphostasis in atherogenesis , 1981 .

[50]  G. Lemole,et al.  The role of lymphstasis in atherogenesis. , 1981, The Annals of thoracic surgery.

[51]  F. H. Sims The arterial wall in malignant disease. , 1979, Atherosclerosis.

[52]  S. Shionoya,et al.  Structure of lymphatics in the aorta and the periaortic tissues, and vascular lesions caused by disturbance of the lymphatics. , 1979, Lymphology.

[53]  K. Shinjo An experimental study on the vascular lesions caused by disturbance of microcirculation in the aortic wall. Influence of obstruction of the lymphatics in the aorta and periaortic tissues. , 1975, Nagoya journal of medical science.

[54]  W. Greene,et al.  Effects of cardiac lymphatic obstruction on coronary arteries. , 1975, The Journal of thoracic and cardiovascular surgery.

[55]  B. Veress,et al.  Lymph vessels of rat aorta and their changes in experimental atherosclerosis: an electron microscopic study. , 1970, Experimental and molecular pathology.

[56]  R. A. Johnson,et al.  Lymphatics of blood vessels. , 1969, Lymphology.

[57]  J. Alexander,et al.  The Lymphatic System in Health and Disease , 2018, Colloquium Series on Integrated Systems Physiology: From Molecule to Function.

[58]  Mei Zhang,et al.  Adventitial lymphatic vessels -- an important role in atherosclerosis. , 2007, Medical hypotheses.

[59]  A. J. Miller,et al.  The role of the lymphatic system in coronary atherosclerosis. , 1992, Medical hypotheses.

[60]  B. Veress,et al.  Effect of experimental lymph congestion on coronary artery permeability in the dog. , 1969, Acta morphologica Academiae Scientiarum Hungaricae.

[61]  A. Laurent Anatomie und Pathologie der Arteria cardiaortalis , 1944 .