Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer

We describe an ultrasensitive atomic magnetometer based on optically pumped potassium atoms operating in a spin-exchange relaxation free regime. We demonstrate magnetic field sensitivity of 160 aT/Hz1/2 in a gradiometer arrangement with a measurement volume of 0.45 cm3 and energy resolution per unit bandwidth of 44ℏ. As an example of an application enabled by such a magnetometer, we describe measurements of weak remnant rock magnetization as a function of temperature with a sensitivity on the order of 10−10 emu/cm3/Hz1/2 and temperatures up to 420°C.

[1]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[2]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[3]  W. Happer,et al.  Spin-Exchange Shift and Narrowing of Magnetic Resonance Lines in Optically Pumped Alkali Vapors , 1973 .

[4]  R. McDermott,et al.  Ultrasensitive magnetic biosensor for homogeneous immunoassay. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Jukka Nenonen,et al.  Thermal Noise in Biomagnetic Measurements , 1993 .

[6]  M. Castellano,et al.  High-sensitivity DC-SQUID measurements , 2000 .

[7]  Lisa Tauxe,et al.  Paleomagnetic principles and practice , 1998 .

[8]  Y. Gallet,et al.  A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: applications to paleo- and archeo-intensity determinations , 2004 .

[9]  S. K. Lee,et al.  Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry , 2007, 0709.2543.

[10]  Z. Fisk,et al.  High-temperature weak ferromagnetism in a low-density free-electron gas , 1999, Nature.

[11]  D Budker,et al.  Zero-field remote detection of NMR with a microfabricated atomic magnetometer , 2008, Proceedings of the National Academy of Sciences.

[12]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[13]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[14]  T. Walker,et al.  Spin-exchange optical pumping of noble-gas nuclei , 1997 .

[15]  D. Drung,et al.  Highly Sensitive and Easy-to-Use SQUID Sensors , 2007, IEEE Transactions on Applied Superconductivity.

[16]  M. Kiviranta,et al.  Superconducting Electronics at mK Temperatures , 2004 .

[17]  D. Awschalom,et al.  Low‐noise modular microsusceptometer using nearly quantum limited dc SQUIDs , 1988 .

[18]  T. W. Kornack,et al.  A low-noise ferrite magnetic shield , 2007 .

[19]  Andrew G. Glen,et al.  APPL , 2001 .

[20]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[21]  Igor Savukov,et al.  Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields , 2005 .

[22]  John Clarke,et al.  Superconducting quantum interference device as a near-quantum-limited amplifier at 0.5 GHz , 2001 .

[23]  M. Romalis,et al.  High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. , 2002, Physical review letters.

[24]  Dietmar Drung,et al.  High-performance DC SQUID read-out electronics , 2002 .