Video Polyp Segmentation: A Deep Learning Perspective

[1]  L. Gool,et al.  Deep Gradient Learning for Efficient Camouflaged Object Detection , 2022, Machine Intelligence Research.

[2]  Syed Waqas Zamir,et al.  Transformers in Medical Imaging: A Survey , 2022, Medical Image Anal..

[3]  Deng-Ping Fan,et al.  Salient Objects in Clutter , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  H. Fu,et al.  TBraTS: Trusted Brain Tumor Segmentation , 2022, MICCAI.

[5]  M. Riegler,et al.  Artificial Intelligence for Colonoscopy: Past, Present, and Future , 2022, IEEE Journal of Biomedical and Health Informatics.

[6]  Keren Fu,et al.  Fast Camouflaged Object Detection via Edge-based Reversible Re-calibration Network , 2021, Pattern Recognit..

[7]  Yixuan Yuan,et al.  Semantic-Oriented Labeled-to-Unlabeled Distribution Translation for Image Segmentation , 2021, IEEE Transactions on Medical Imaging.

[8]  P. Luo,et al.  PVT v2: Improved baselines with Pyramid Vision Transformer , 2021, Computational Visual Media.

[9]  Ming-Ming Cheng,et al.  Concealed Object Detection , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Chaojie Ji,et al.  Boundary-aware Context Neural Network for Medical Image Segmentation , 2020, Medical Image Anal..

[11]  Zhe Liu,et al.  Supervised and Semi-supervised Methods for Abdominal Organ Segmentation: A Review , 2021, International Journal of Automation and Computing.

[12]  Stephen Lin,et al.  The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos , 2021, NeurIPS.

[13]  Huchuan Lu,et al.  Dynamic Context-Sensitive Filtering Network for Video Salient Object Detection , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[14]  明明 程,et al.  Cognitive vision inspired object segmentation metric and loss function , 2021, SCIENTIA SINICA Informationis.

[15]  H. Fu,et al.  Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers , 2021, CAAI Artificial Intelligence Research.

[16]  Huchuan Lu,et al.  Automatic Polyp Segmentation via Multi-scale Subtraction Network , 2021, MICCAI.

[17]  Ling Shao,et al.  Full-duplex strategy for video object segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[18]  S.Kevin Zhou,et al.  Shallow Attention Network for Polyp Segmentation , 2021, MICCAI.

[19]  Ping Luo,et al.  Multi-frame Collaboration for Effective Endoscopic Video Polyp Detection via Spatial-Temporal Feature Transformation , 2021, MICCAI.

[20]  Daijin Kim,et al.  UACANet: Uncertainty Augmented Context Attention for Polyp Segmentation , 2021, ACM Multimedia.

[21]  Xiuchao Sui,et al.  Medical Image Segmentation using Squeeze-and-Expansion Transformers , 2021, IJCAI.

[22]  Ling Shao,et al.  Progressively Normalized Self-Attention Network for Video Polyp Segmentation , 2021, MICCAI.

[23]  Zhenkun Wen,et al.  Precise Yet Efficient Semantic Calibration and Refinement in ConvNets for Real-time Polyp Segmentation from Colonoscopy Videos , 2021, AAAI.

[24]  Cuncong Zhong,et al.  Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations , 2021, PloS one.

[25]  Yundong Zhang,et al.  TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation , 2021, MICCAI.

[26]  Haavard D. Johansen,et al.  Real-Time Polyp Detection, Localisation and Segmentation in Colonoscopy Using Deep Learning , 2020, ArXiv.

[27]  Duc Tien Dang Nguyen,et al.  Kvasir-Capsule, a video capsule endoscopy dataset , 2020, Scientific Data.

[28]  Zheng Lin,et al.  Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[29]  Kai Zhao,et al.  Res2Net: A New Multi-Scale Backbone Architecture , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Tao Li,et al.  Structure-Measure: A New Way to Evaluate Foreground Maps , 2017, International Journal of Computer Vision.

[31]  Tam V. Nguyen,et al.  CCBANet: Cascading Context and Balancing Attention for Polyp Segmentation , 2021, International Conference on Medical Image Computing and Computer-Assisted Intervention.

[32]  Yiting Ma,et al.  LDPolypVideo Benchmark: A Large-Scale Colonoscopy Video Dataset of Diverse Polyps , 2021, MICCAI.

[33]  Max Q.-H. Meng,et al.  HRENet: A Hard Region Enhancement Network for Polyp Segmentation , 2021, MICCAI.

[34]  Yonghong Tian,et al.  Learnable Oriented-Derivative Network for Polyp Segmentation , 2021, International Conference on Medical Image Computing and Computer-Assisted Intervention.

[35]  M. Riegler,et al.  PolypGen: A multi-center polyp detection and segmentation dataset for generalisability assessment , 2021, ArXiv.

[36]  F. Sánchez-Margallo,et al.  PICCOLO White-Light and Narrow-Band Imaging Colonoscopic Dataset: A Performance Comparative of Models and Datasets , 2020, Applied Sciences.

[37]  Shuguang Cui,et al.  Adaptive Context Selection for Polyp Segmentation , 2020, MICCAI.

[38]  Wei Wang,et al.  PolypSeg: An Efficient Context-Aware Network for Polyp Segmentation from Colonoscopy Videos , 2020, MICCAI.

[39]  Kanwal K. Bhatia,et al.  Endoscopic Polyp Segmentation Using a Hybrid 2D/3D CNN , 2020, MICCAI.

[40]  Jianbing Shen,et al.  MATNet: Motion-Attentive Transition Network for Zero-Shot Video Object Segmentation , 2020, IEEE Transactions on Image Processing.

[41]  K. Mori,et al.  Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy video database (with video). , 2020, Gastrointestinal endoscopy.

[42]  Ji Li,et al.  An improved deep learning approach and its applications on colonic polyp images detection , 2020, BMC Medical Imaging.

[43]  Sridha Sridharan,et al.  Two-Stream Deep Feature Modelling for Automated Video Endoscopy Data Analysis , 2020, MICCAI.

[44]  Ling Shao,et al.  PraNet: Parallel Reverse Attention Network for Polyp Segmentation , 2020, MICCAI.

[45]  Ling Shao,et al.  Camouflaged Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Lijuan Wang,et al.  Pyramid Constrained Self-Attention Network for Fast Video Salient Object Detection , 2020, AAAI.

[47]  Jing Liu,et al.  Normalized and Geometry-Aware Self-Attention Network for Image Captioning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Sharib Ali,et al.  Endoscopy disease detection challenge 2020 , 2020, ArXiv.

[49]  Gustavo Carneiro,et al.  Deep learning uncertainty and confidence calibration for the five-class polyp classification from colonoscopy , 2020, Medical Image Anal..

[50]  Duc Tien Dang Nguyen,et al.  HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy , 2019, Scientific Data.

[51]  Jianming Liang,et al.  UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation , 2019, IEEE Transactions on Medical Imaging.

[52]  Thomas de Lange,et al.  Kvasir-SEG: A Segmented Polyp Dataset , 2019, MMM.

[53]  Thomas de Lange,et al.  ResUNet++: An Advanced Architecture for Medical Image Segmentation , 2019, 2019 IEEE International Symposium on Multimedia (ISM).

[54]  Cheng Chen,et al.  Selective Feature Aggregation Network with Area-Boundary Constraints for Polyp Segmentation , 2019, MICCAI.

[55]  Ling Shao,et al.  See More, Know More: Unsupervised Video Object Segmentation With Co-Attention Siamese Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Keerthi Ram,et al.  Psi-Net: Shape and boundary aware joint multi-task deep network for medical image segmentation , 2019, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[57]  Carmen C. Y. Poon,et al.  Polyp detection during colonoscopy using a regression-based convolutional neural network with a tracker , 2018, Pattern Recognit..

[58]  Nima Tajbakhsh,et al.  UNet++: A Nested U-Net Architecture for Medical Image Segmentation , 2018, DLMIA/ML-CDS@MICCAI.

[59]  Bo Ren,et al.  Enhanced-alignment Measure for Binary Foreground Map Evaluation , 2018, IJCAI.

[60]  Dimitris K. Iakovidis,et al.  Detecting and Locating Gastrointestinal Anomalies Using Deep Learning and Iterative Cluster Unification , 2018, IEEE Transactions on Medical Imaging.

[61]  K. Najarian,et al.  Polyp Segmentation in Colonoscopy Images Using Fully Convolutional Network , 2018, 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[62]  Abhinav Gupta,et al.  Non-local Neural Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[63]  Yunhong Wang,et al.  Receptive Field Block Net for Accurate and Fast Object Detection , 2017, ECCV.

[64]  L. Shapiro,et al.  TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 2022 .

[65]  Omid Haji Maghsoudi,et al.  Superpixel based segmentation and classification of polyps in wireless capsule endoscopy , 2017, 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB).

[66]  Michael Riegler,et al.  KVASIR: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection , 2017, MMSys.

[67]  Dimitris K. Iakovidis,et al.  KID Project: an internet-based digital video atlas of capsule endoscopy for research purposes , 2017, Endoscopy International Open.

[68]  Paolo Dario,et al.  Fully convolutional neural networks for polyp segmentation in colonoscopy , 2017, Medical Imaging.

[69]  Antonio M. López,et al.  A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images , 2016, Journal of healthcare engineering.

[70]  Hao Chen,et al.  Integrating Online and Offline Three-Dimensional Deep Learning for Automated Polyp Detection in Colonoscopy Videos , 2017, IEEE Journal of Biomedical and Health Informatics.

[71]  Geoffrey E. Hinton,et al.  Layer Normalization , 2016, ArXiv.

[72]  Daniel Pizarro-Perez,et al.  Computer-Aided Classification of Gastrointestinal Lesions in Regular Colonoscopy , 2016, IEEE Transactions on Medical Imaging.

[73]  Nima Tajbakhsh,et al.  Automated Polyp Detection in Colonoscopy Videos Using Shape and Context Information , 2016, IEEE Transactions on Medical Imaging.

[74]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[75]  Fernando Vilariño,et al.  WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians , 2015, Comput. Medical Imaging Graph..

[76]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[77]  Ali Borji,et al.  Salient Object Detection: A Benchmark , 2015, IEEE Transactions on Image Processing.

[78]  Lihi Zelnik-Manor,et al.  How to Evaluate Foreground Maps , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[79]  Isabel N. Figueiredo,et al.  Automated Polyp Detection in Colon Capsule Endoscopy , 2013, IEEE Transactions on Medical Imaging.

[80]  Aymeric Histace,et al.  Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer , 2014, International Journal of Computer Assisted Radiology and Surgery.

[81]  Fernando Vilariño,et al.  Towards automatic polyp detection with a polyp appearance model , 2012, Pattern Recognit..

[82]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[83]  Sabine Süsstrunk,et al.  Frequency-tuned salient region detection , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[84]  Basanna V. Dhandra,et al.  Analysis of Abnormality in Endoscopic images using Combined HSI Color Space and Watershed Segmentation , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[85]  Urs Ramer,et al.  An iterative procedure for the polygonal approximation of plane curves , 1972, Comput. Graph. Image Process..