Theory of Multidimensional Scaling

It is difficult to give a precise definition of MDS, because some people use the term for a very specific class of techniques while others use it in a much more general sense. Consequently it makes sense to distinguish between MDS in the broad sense and MDS in the narrow sense. MDS in the broad sense inc ludes various forms of cluster analysis and of linear multivariate analysis, MDS in the narrow sense represents dissimilarity data in a low-dimensional space. People who prefer the broad-sense definition want to emphasize the close relationships of clustering and scaling techniques. Of course this does not imply that they are not aware of the important differences. Clustering techniques fit a non-dimensional discrete structure to dissimilarity data, narrow-sense MDS fits a continuous dimensional structure. But both types of technique can be formalized as representing distance-like data in a particular metric space by minimizing some kind of loss function. The difference, then, is in the choice of the target metric space, the structure of the two problems is very much alike. The paper pioneering this point of view is Hartigan's (1967). In fact Hartigan proceeds the other way around, he takes clustering as the starting point and lets clustering in the broad sense include narrow-sense MDS. The same starting point and the same order are more or less apparent in the important review papers of Cormack (1971) and Sibson (1972). An influential broad-sense paper that uses narrow-sense MDS as the starting point is that of Carroll (1976). In fact Carroll discusses techniques that explicitly combine aspects of clustering and narrow-sense MDS, and find mixed discrete/continuous representations. In a very recent paper Carroll and Arabie (1980) propose a useful taxonomy of MDS data and methods which is very broad indeed. Investigators who are less interested in formal similarities of methods and more interested in substantial differences in models have naturally emphasized the choice of the space, and consequently the differences between clustering and narrow-sense MDS. Of course detailed comparison of the two classes of techniques already presupposes a common framework. This is obvious

[1]  A. Householder,et al.  Discussion of a set of points in terms of their mutual distances , 1938 .

[2]  James T. Townsend,et al.  A clarification of some current multiplicative confusion models , 1978 .

[3]  L. Guttman,et al.  The Quantification of a class of attributes : A theory and method of scale construction , 1941 .

[4]  David H. Krantz,et al.  Metrics and geodesics induced by order relations , 1967 .

[5]  John S. Lew Preorder Relations and Pseudoconvex Metrics , 1975 .

[6]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[7]  H. Landahl Neural mechanisms for the concepts of difference and similarity , 1945 .

[8]  P. Buneman The Recovery of Trees from Measures of Dissimilarity , 1971 .

[9]  L. Guttman A general nonmetric technique for finding the smallest coordinate space for a configuration of points , 1968 .

[10]  E. Holman The relation between hierarchical and euclidean models for psychological distances , 1972 .

[11]  H. Rutishauser Simultaneous iteration method for symmetric matrices , 1970 .

[12]  A. Tversky,et al.  Similarity of schematic faces: A test of , 1969 .

[13]  R. MacCallum,et al.  Effects of conditionality on INDSCAL and ALSCAL weights , 1977 .

[14]  L CHARNWOOD,et al.  Mathematical analysis of binocular vision. , 1948, The Optician.

[15]  J. Ramsay Maximum likelihood estimation in multidimensional scaling , 1977 .

[16]  O. Taussky A Recurring Theorem on Determinants , 1949 .

[17]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[18]  W. Hays,et al.  Multidimensional unfolding: Determining the dimensionality of ranked preference data , 1960 .

[19]  R. Sibson Order Invariant Methods for Data Analysis , 1972 .

[20]  J. Carroll,et al.  Spatial, non-spatial and hybrid models for scaling , 1976 .

[21]  J. Ramsay Confidence regions for multidimensional scaling analysis , 1978 .

[22]  R. MacCallum,et al.  A monte carlo investigation of recovery of structure by alscal , 1977 .

[23]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[24]  Rory A. Fisher,et al.  The Systematic Location of Genes by Means of Crossover Observations , 1922, The American Naturalist.

[25]  Louis Guttman,et al.  Measurement as structural theory , 1971 .

[26]  F. Restle A metric and an ordering on sets , 1959 .

[27]  Erich Goldmeier,et al.  Über Ähnlichkeit bei gesehenen Figuren , 1937 .

[28]  William L. Hays,et al.  Multidimensional unfolding: Determining configuration from complete rank order preference data , 1961 .

[29]  Forrest W. Young,et al.  Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features , 1977 .

[30]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[31]  Louis Guttman,et al.  Introduction to facet design and analysis , 1959 .

[32]  Peter H. Schönemann,et al.  Similarity of rectangles , 1977 .

[33]  Bruce Bloxom,et al.  Constrained multidimensional scaling inN spaces , 1978 .

[34]  Lloyd H. Nakatani,et al.  Confusion-choice model for multidimensional psychophysics ☆ , 1972 .

[35]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[36]  John B. Kelly,et al.  Products of Zero-One Matrices , 1968, Canadian Journal of Mathematics.

[37]  R. Shepard Stimulus and response generalization: deduction of the generalization gradient from a trace model. , 1958, Psychological review.

[38]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[39]  J. Leeuw,et al.  A new computational method to fit the weighted euclidean distance model , 1978 .

[40]  J. Hartigan REPRESENTATION OF SIMILARITY MATRICES BY TREES , 1967 .

[41]  R. Shepard Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space , 1957 .

[42]  J. Cunningham,et al.  Free trees and bidirectional trees as representations of psychological distance , 1978 .

[43]  A. Tversky,et al.  Similarity of rectangles: An analysis of subjective dimensions , 1975 .

[44]  Louis Guttman,et al.  An Approach for Quantifying Paired Comparisons and Rank Order , 1946 .

[45]  Joseph E. Valentine,et al.  Hyperbolic spaces and quadratic forms , 1970 .

[46]  Karl F. Wender,et al.  A test of independence of dimensions in multidimensional scaling , 1971 .

[47]  John C. Gower,et al.  Graphical Representation of Asymmetric Matrices , 1978 .

[48]  Frank L. Klingberg,et al.  Studies in measurement of the relations among sovereign states , 1941 .

[49]  Herbert Busemann,et al.  The geometry of geodesics , 1955 .

[50]  David H. Krantz,et al.  Rational distance functions for multidimensional scaling , 1967 .

[51]  Herbert Busemann,et al.  Recent Synthetic Differential Geometry , 1970 .

[52]  R. M. Cormack,et al.  A Review of Classification , 1971 .

[53]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[54]  J. KARLG. STRUCTURAL ANALYSIS OF COVARIANCE AND CORRELATION MATRICES , 2000 .

[55]  P. Schönemann ON METRIC MULTIDIMENSIONAL UNFOLDING , 1970 .

[56]  Samuel J. Messick,et al.  Some Recent Theoretical Developments in Multidimensional Scaling1 , 1956 .

[57]  J. Lingoes Some boundary conditions for a monotone analysis of symmetric matrices , 1971 .

[58]  James O. Ramsay,et al.  Solving implicit equations in psychometric data analysis , 1975 .

[59]  Peter Lancaster,et al.  A Review of Numerical Methods for Eigenvalue Problems Nonlinear in the Parameter , 1977 .

[60]  Yoshio Takane,et al.  Three notes on ALSCAL , 1978 .

[61]  S. Kullback,et al.  Symmetry and Marginal Homogeneity of an r×r Contingency Table , 1969 .

[62]  K. Menger Untersuchungen über allgemeine Metrik , 1928 .

[63]  Chikio Hayashi MINIMUM DIMENSION ANALYSIS MDA , 1974 .

[64]  R. Shepard Representation of structure in similarity data: Problems and prospects , 1974 .

[65]  I. J. Schoenberg On Certain Metric Spaces Arising From Euclidean Spaces by a Change of Metric and Their Imbedding in Hilbert Space , 1937 .

[66]  L. M. Blumenthal,et al.  Metric characterizations of Banach and Euclidean spaces , 1964 .

[67]  Joseph B. Keller,et al.  Factorization of matrices by least-squares , 1962 .

[68]  D. Luce,et al.  Detection and Recognition " ' , 2006 .

[69]  L. Guttman A basis for scaling qualitative data. , 1944 .

[70]  L. Guttman The principal components of scale analysis , 1950 .

[71]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[72]  R. Abelson,et al.  The additive constant problem in multidimensional scaling , 1956 .

[73]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[74]  Roger N. Shepard,et al.  Additive clustering: Representation of similarities as combinations of discrete overlapping properties. , 1979 .

[75]  T. Caelli,et al.  Constant curvature Riemannian scaling , 1978 .

[76]  P. Schönemann,et al.  An algebraic solution for a class of subjective metrics models , 1972 .

[77]  Michael Ray,et al.  Quantifying Qualitative Data , 2004 .

[78]  J. J. Seidel,et al.  METRIC PROBLEMS IN ELLIPTIC GEOMETRY , 1975 .

[79]  R. Shepard Stimulus and response generalization: tests of a model relating generalization to distance in psychological space. , 1958, Journal of experimental psychology.

[80]  R. Shepard Metric structures in ordinal data , 1966 .

[81]  J. Kruskal More factors than subjects, tests and treatments: An indeterminacy theorem for canonical decomposition and individual differences scaling , 1976 .

[82]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[83]  W. Torgerson,et al.  Multidimensional scaling of similarity , 1965, Psychometrika.

[84]  A. Tversky,et al.  Additive similarity trees , 1977 .

[85]  Henry Pieszko,et al.  Multidimensional scaling in riemannian space , 1975 .

[86]  E. Mark Gold,et al.  Metric unfolding: Data requirement for unique solution & clarification of Schönemann's algorithm , 1973 .

[87]  J. Leeuw Applications of Convex Analysis to Multidimensional Scaling , 2000 .

[88]  J. J. Seidel Angles and distances in $n$-dimensional euclidean and noneuclidean geometry (III) , 1955 .

[89]  R. Duncan Luce,et al.  A choice theory analysis of similarity judgments , 1961 .

[90]  J. S. Lew Some counterexamples in multidimensional scaling , 1978 .

[91]  A. Tversky Features of Similarity , 1977 .

[92]  David H. Krantz,et al.  The dimensional representation and the metric structure of similarity data , 1970 .

[93]  C. Krumhansl Concerning the Applicability of Geometric Models to Similarity Data : The Interrelationship Between Similarity and Spatial Density , 2005 .

[94]  Hannes Eisler THE ALGEBRAIC AND STATISTICAL TRACTABILITY OF THE CITY BLOCK METRIC , 1973 .

[95]  D. G. Weeks,et al.  Restricted multidimensional scaling models , 1978 .