Combining Voltage and Calcium Imaging from Neuronal Dendrites

The ability to monitor membrane potential (Vm) and calcium (Ca2+) transients at multiple locations on the same neuron can facilitate further progress in our understanding of neuronal function. Here we describe a method to combine Vm and Ca2+ imaging using styryl voltage sensitive dyes and Fura type UV-excitable Ca2+ indicators. In all cases Vm optical signals are linear with membrane potential changes, but the calibration of optical signals on an absolute scale is presently possible only in some neurons. The interpretation of Ca2+ optical signals depends on the indicator Ca2+ buffering capacity relative to the cell endogenous buffering capacity. In hippocampal CA1 pyramidal neurons, loaded with JPW-3028 and 300 μM Bis-Fura-2, Vm optical signals cannot be calibrated and the physiological Ca2+ dynamics are compromised by the presence of the indicator. Nevertheless, at each individual site, relative changes in Vm and Ca2+ fluorescence signals under different conditions can provide meaningful new information on local dendritic integration. In cerebellar Purkinje neurons, loaded with JPW-1114 and 1 mM Fura-FF, Vm optical signals can be calibrated in terms of mV and Ca2+ optical signals quantitatively reveal the physiological changes in free Ca2+. Using these two examples, the method is explained in detail.

[1]  S. Antic,et al.  Functional profile of the giant metacerebral neuron of Helix aspersa: temporal and spatial dynamics of electrical activity in situ , 2000, The Journal of physiology.

[2]  P. Saggau,et al.  Simultaneous optical recording of membrane potential and intracellular calcium from brain slices. , 1999, Methods.

[3]  Thomas K. Berger,et al.  Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex. , 2007, Journal of neurophysiology.

[4]  A Grinvald,et al.  Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. , 1987, Biophysical journal.

[5]  B. Sakmann,et al.  Pre‐ and postsynaptic whole‐cell recordings in the medial nucleus of the trapezoid body of the rat. , 1995, The Journal of physiology.

[6]  Rafael Yuste,et al.  Imaging membrane potential in dendritic spines. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Andrew Bullen,et al.  Indicators and optical configuration for simultaneous high-resolution recording of membrane potential and intracellular calcium using laser scanning microscopy , 1998, Pflügers Archiv.

[8]  B. Keller,et al.  Calcium dynamics and buffering in motoneurones of the mouse spinal cord , 1999, The Journal of physiology.

[9]  Bernd Kuhn,et al.  High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. , 2004, Biophysical journal.

[10]  M. Goldberg,et al.  Ionic selectivity of low-affinity ratiometric calcium indicators: mag-Fura-2, Fura-2FF and BTC. , 2000, Cell calcium.

[11]  L M Loew,et al.  Spectra, membrane binding, and potentiometric responses of new charge shift probes. , 1985, Biochemistry.

[12]  W. N. Ross,et al.  Changes in axon fluorescence during activity: Molecular probes of membrane potential , 1974, The Journal of Membrane Biology.

[13]  M. Yeckel,et al.  Photolysis of postsynaptic caged Ca2+ can potentiate and depress mossy fiber synaptic responses in rat hippocampal CA3 pyramidal neurons. , 2004, Journal of neurophysiology.

[14]  Daniel Johnston,et al.  LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites , 2004, Nature Neuroscience.

[15]  K. Skorecki,et al.  Simultaneous fluorescence measurement of calcium and membrane potential responses to endothelin. , 1992, The American journal of physiology.

[16]  Leslie M. Loew,et al.  Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites , 2007, Journal of Neuroscience Methods.

[17]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[18]  N. Dragomir,et al.  two-photon excitation , 2009 .

[19]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[20]  J Bischofberger,et al.  Action potential propagation into the presynaptic dendrites of rat mitral cells , 1997, The Journal of physiology.

[21]  Arjun G. Yodh,et al.  Near infrared two-photon excitation cross-sections of voltage-sensitive dyes , 2005, Journal of Neuroscience Methods.

[22]  Attila Losonczy,et al.  Associative pairing enhances action potential back‐propagation in radial oblique branches of CA1 pyramidal neurons , 2007, The Journal of physiology.

[23]  S. Antic,et al.  Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. , 1999, Journal of neurophysiology.

[24]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[25]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[26]  Marco Canepari,et al.  Ca2+ Ion Permeability and Single-Channel Properties of the Metabotropic Slow EPSC of Rat Purkinje Neurons , 2004, The Journal of Neuroscience.

[27]  Srdjan D Antic,et al.  Action Potentials in Basal and Oblique Dendrites of Rat Neocortical Pyramidal Neurons , 2003, The Journal of physiology.

[28]  M. Häusser,et al.  Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch‐clamp recordings , 2001, The Journal of physiology.

[29]  S. Antic,et al.  Optical signals from neurons with internally applied voltage-sensitive dyes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  R. Gillies,et al.  Simultaneous measurement of intracellular pH and Ca2+ using the fluorescence of SNARF-1 and fura-2. , 1991, The American journal of physiology.

[31]  Peter Saggau,et al.  Simultaneous optical recording of evoked and spontaneous transients of membrane potential and intracellular calcium concentration with high spatio-temporal resolution , 1995, Journal of Neuroscience Methods.

[32]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[33]  B. Keller,et al.  Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)‐related motoneurone disease , 2000, The Journal of physiology.

[34]  C. Hansel,et al.  Bidirectional Parallel Fiber Plasticity in the Cerebellum under Climbing Fiber Control , 2004, Neuron.

[35]  Arjun G Yodh,et al.  Two-photon excitation of potentiometric probes enables optical recording of action potentials from mammalian nerve terminals in situ. , 2008, Journal of neurophysiology.

[36]  Wei R Chen,et al.  Voltage Imaging from Dendrites of Mitral Cells: EPSP Attenuation and Spike Trigger Zones , 2004, The Journal of Neuroscience.

[37]  I. Llano,et al.  High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. , 1996, The Journal of physiology.

[38]  D. Zecevic,et al.  Multiple spike-initiation zones in single neurons revealed by voltage-sensitive dyes , 1996, Nature.

[39]  L Sacconi,et al.  Overcoming photodamage in second-harmonic generation microscopy: real-time optical recording of neuronal action potentials. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Stephen J Redman,et al.  Calcium Dynamics, Buffering, and Buffer Saturation in the Boutons of Dentate Granule-Cell Axons in the Hilus , 2003, The Journal of Neuroscience.

[41]  Leonardo Sacconi,et al.  Optical recording of fast neuronal membrane potential transients in acute mammalian brain slices by second-harmonic generation microscopy. , 2005, Journal of neurophysiology.

[42]  Srdjan D Antic,et al.  Voltage and calcium transients in basal dendrites of the rat prefrontal cortex , 2007, The Journal of physiology.

[43]  G. Salama,et al.  A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations , 1992, The Journal of Membrane Biology.

[44]  M. Naraghi,et al.  T-jump study of calcium binding kinetics of calcium chelators. , 1997, Cell calcium.

[45]  M. Häusser,et al.  Initiation and spread of sodium action potentials in cerebellar purkinje cells , 1994, Neuron.

[46]  Marco Canepari,et al.  Imaging neuronal calcium fluorescence at high spatio-temporal resolution , 1999, Journal of Neuroscience Methods.

[47]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[48]  E. Neher,et al.  The use of fura-2 for estimating ca buffers and ca fluxes , 1995, Neuropharmacology.

[49]  B. Sakmann,et al.  Back‐propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex , 2001, The Journal of physiology.

[50]  L. Loew,et al.  Charge-shift probes of membrane potential: a probable electrochromic mechanism for p-aminostyrylpyridinium probes on a hemispherical lipid bilayer. , 1981, Biophysical journal.

[51]  B. Keller,et al.  Endogenous calcium buffering in motoneurones of the nucleus hypoglossus from mouse , 1998, The Journal of physiology.

[52]  A. C. Meyer,et al.  Released Fraction and Total Size of a Pool of Immediately Available Transmitter Quanta at a Calyx Synapse , 1999, Neuron.

[53]  D. Ogden,et al.  Regulation of Ca2+ Release by InsP3 in Single Guinea Pig Hepatocytes and Rat Purkinje Neurons , 1997, The Journal of general physiology.

[54]  Dejan Zecevic,et al.  Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre‐ and post‐synaptic activity: a combined voltage‐ and calcium‐imaging study , 2007, The Journal of physiology.

[55]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Srdjan D Antic,et al.  A Strict Correlation between Dendritic and Somatic Plateau Depolarizations in the Rat Prefrontal Cortex Pyramidal Neurons , 2005, The Journal of Neuroscience.

[57]  M. Pinter,et al.  Time courses of calcium and calcium-bound buffers following calcium influx in a model cell. , 1993, Biophysical journal.

[58]  G. Stuart,et al.  Site of Action Potential Initiation in Layer 5 Pyramidal Neurons , 2006, The Journal of Neuroscience.