Distributive smoothers in multigrid for problems with dominating grad–div operators
暂无分享,去创建一个
Jose L. Gracia | Cornelis W. Oosterlee | Francisco Javier Lisbona | Francisco José Gaspar | C. Oosterlee | F. Gaspar | F. Lisbona | J. Gracia
[1] Joachim Schöberl,et al. Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.
[2] Petr N. Vabishchevich,et al. A stabilized method for a secondary consolidation Biot's model , 2008 .
[3] R. Showalter. Diffusion in Poro-Elastic Media , 2000 .
[4] E. F. Kaasschieter,et al. Squeezing a Sponge: A Three-Dimensional Solution in Poroelasticity , 2003 .
[5] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[6] Abimael F. D. Loula,et al. Improved accuracy in finite element analysis of Biot's consolidation problem , 1992 .
[7] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[8] S. Vanka. Block-implicit multigrid solution of Navier-Stokes equations in primitive variables , 1986 .
[9] A. Brandt,et al. Multigrid Solutions to Elliptic Flow Problems , 1979 .
[10] Cornelis W. Oosterlee,et al. A stabilized difference scheme for deformable porous media and its numerical resolution by multigrid methods , 2008 .
[11] Abimael F. D. Loula,et al. On stability and convergence of finite element approximations of biot's consolidation problem , 1994 .
[12] Ralf Hiptmair,et al. Multilevel methods for mixed finite elements in three dimensions , 1999, Numerische Mathematik.
[13] R. Lazarov,et al. On convergence of certain finite volume difference discretizations for 1D poroelasticity interface problems , 2007 .
[14] Cornelis W. Oosterlee,et al. An Efficient Multigrid Solver based on Distributive Smoothing for Poroelasticity Equations , 2004, Computing.
[15] Hélène Barucq,et al. On nonlinear Biot's consolidation models , 2005 .
[16] Gabriel Wittum,et al. On the convergence of multi-grid methods with transforming smoothers , 1990 .
[17] P. Vassilevski,et al. Multilevel iterative methods for mixed finite element discretizations of elliptic problems , 1992 .
[18] K. Terzaghi. Theoretical Soil Mechanics , 1943 .
[19] D. Braess,et al. An efficient smoother for the Stokes problem , 1997 .
[20] M. Shashkov,et al. Adjoint operators for the natural discretizations of the divergence gradient and curl on logically rectangular grids , 1997 .
[21] Ping Lin. A Sequential Regularization Method for Time-Dependent Incompressible Navier--Stokes Equations , 1997 .
[22] R. S. Falk,et al. PRECONDITIONING IN H (div) AND APPLICATIONS , 1997 .
[23] Maxim A. Olshanskii,et al. Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .
[24] John H. Cushman,et al. Multiscale flow and deformation in hydrophilic swelling porous media , 1996 .
[25] Mikhail Shashkov,et al. The effect of inner products for discrete vector fields on the accuracy of mimetic finite difference methods , 2001 .
[26] Tongchun Li,et al. A new stabilized enhanced strain element with equal order of interpolation for soil consolidation problems , 2003 .
[27] F. Gaspar,et al. A finite difference analysis of Biot's consolidation model , 2003 .
[28] Cornelis W. Oosterlee,et al. An efficient multigrid solver for a reformulated version of the poroelasticity system , 2007 .
[29] G. Wittum. Multi-grid methods for stokes and navier-stokes equations , 1989 .
[30] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[31] Cornelis W. Oosterlee,et al. A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system , 2004, Numer. Linear Algebra Appl..
[32] Stephen F. McCormick,et al. Multilevel adaptive methods for partial differential equations , 1989, Frontiers in applied mathematics.
[33] M. Biot. General Theory of Three‐Dimensional Consolidation , 1941 .
[34] E. F. Kaasschieter,et al. Squeezing a sponge : a three-dimensional analytic solution in poroelasticity , 2000 .
[35] R. Showalter,et al. DIFFUSION IN DEFORMING POROUS MEDIA , 2002 .
[36] Douglas N. Arnold,et al. Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.
[37] B. Schrefler,et al. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .
[38] Vidar Thomée,et al. Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem , 1996 .
[39] Olaf Kolditz,et al. Finite element analysis of poro-elastic consolidation in porous media: Standard and mixed approaches , 2006 .
[40] Maxim A. Olshanskii,et al. Grad-div stablilization for Stokes equations , 2003, Math. Comput..
[41] Christian Wieners,et al. Robust Multigrid Methods for Nearly Incompressible Elasticity , 2000, Computing.
[42] F. Gaspar,et al. Staggered grid discretizations for the quasi-static Biot's consolidation problem , 2006 .