Detection of gravity field source boundaries using deconvolution method

[1]  P. L. Combettes,et al.  Dualization of Signal Recovery Problems , 2009, 0907.0436.

[2]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[3]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[4]  Sergei V. Pereverzyev,et al.  On the Adaptive Selection of the Parameter in Regularization of Ill-Posed Problems , 2005, SIAM J. Numer. Anal..

[5]  Luis Tenorio,et al.  Data and model uncertainty estimation for linear inversion: Geophys , 2002 .

[6]  Maurizio Fedi,et al.  Wavelet analysis for the regional‐residual and local separation of potential field anomalies , 1998 .

[7]  Gregory A. Newman,et al.  Image appraisal for 2-D and 3-D electromagnetic inversion , 2000 .

[8]  Richard S. Smith,et al.  Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI (TM) method , 1997 .

[9]  R. O. Hansen,et al.  Two-dimensional inverse filtering for the rectification of the magnetic gradiometry signal , 2008 .

[10]  M. Jessell Three-dimensional geological modelling of potential-field data , 2001 .

[11]  Mark Pilkington,et al.  3-D magnetic imaging using conjugate gradients , 1997 .

[12]  Deepa Kundur,et al.  Blind Image Deconvolution , 2001 .

[13]  R. Snieder Inverse Problems in Geophysics , 2001 .

[14]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[15]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[16]  D. Teskey,et al.  A system for rapid digital aeromagnetic interpretation , 1970 .

[17]  Oliver G. Jensen,et al.  Homomorphic deconvolution: Application to gravitational and magnetic field waveforms , 1983 .

[18]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[19]  B. Tsivouraki,et al.  Wavelet transform in denoising magnetic archaeological prospecting data , 2007 .

[20]  Bruno Verduzco,et al.  The meter readerNew insights into magnetic derivatives for structural mapping , 2004 .

[21]  Luís B. Almeida,et al.  Blind and Semi-Blind Deblurring of Natural Images , 2010, IEEE Transactions on Image Processing.

[22]  R. Blakely Potential theory in gravity and magnetic applications , 1996 .

[23]  Gordon R. J. Cooper,et al.  Filtering using variable order vertical derivatives , 2004, Comput. Geosci..

[24]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..

[25]  Two-dimensional inversion filters in magnetic prospecting: Application to the exploration for buried antiquities , 1992 .

[26]  M. Fedi,et al.  Multiscale analysis of potential fields by a ridge consistency criterion: the reconstruction of the Bishop basement , 2012 .

[27]  D. Oldenburg,et al.  3-D inversion of gravity data , 1998 .

[28]  Vijay P. Dimri,et al.  DEPTH ESTIMATION FROM THE SCALING POWER SPECTRUM OF POTENTIAL FIELDS , 1996 .

[29]  Vijay Singh,et al.  Potential field tilt—a new concept for location of potential field sources , 1994 .

[30]  Behzad Sharif,et al.  Discrete Tomography in Discrete Deconvolution: Deconvolution of Binary Images Using Ryser's Algorithm , 2005, Electron. Notes Discret. Math..

[31]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[32]  B. K. Bhattacharyya,et al.  Computation of gravity and magnetic anomalies due to inhomogeneous distribution of magnetization and density in a localized region , 1977 .

[33]  H. M. Evjen THE PLACE OF THE VERTICAL GRADIENT IN GRAVITATIONAL INTERPRETATIONS , 1936 .

[34]  D. Oldenburg,et al.  Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method , 2003 .

[35]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[36]  Gordon R. J. Cooper,et al.  Balancing images of potential-field data , 2009 .

[37]  V. Dimri,et al.  Deconvolution and Inverse Theory: Application to Geophysical Problems , 1992 .

[38]  Partha S. Routh,et al.  The point-spread function measure of resolution for the 3-D electrical resistivity experiment , 2009 .

[39]  Mario Bertero,et al.  Iterative deconvolution and semiblind deconvolution methods in magnetic archaeological prospecting , 2009 .

[40]  Yiqiu Dong,et al.  An Efficient Primal-Dual Method for L1TV Image Restoration , 2009, SIAM J. Imaging Sci..

[41]  Sankararaman Suryanarayanan,et al.  A Perceptual Evaluation of JPEG 2000 Image Compression for Digital Mammography: Contrast-Detail Characteristics , 2004, Journal of Digital Imaging.

[42]  Tianyou Liu,et al.  Calculation of Gravity and Magnetic Source Boundaries Based on Anisotropy Normalized Variance , 2011 .

[43]  Xiangyun Hu,et al.  Geophysical model enhancement technique based on blind deconvolution , 2012, Comput. Geosci..

[44]  Gordon R. J. Cooper,et al.  Enhancing potential field data using filters based on the local phase , 2006, Comput. Geosci..

[45]  Norman R. Paterson,et al.  Applications of gravity and magnetic surveys: The state-of-the-art in 1985 , 1985 .

[46]  V. Dimri,et al.  Crustal Configuration of the Northwest Himalaya Based on Modeling of Gravity Data , 2011 .

[47]  Misac N. Nabighian,et al.  Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section , 1974 .

[48]  Chris Wijns,et al.  Theta map: Edge detection in magnetic data , 2005 .

[49]  S. Hsu,et al.  High‐resolution detection of geologic boundaries from potential‐field anomalies: An enhanced analytic signal technique , 1996 .

[50]  D. T. Thompson,et al.  EULDPH: A new technique for making computer-assisted depth estimates from magnetic data , 1982 .

[51]  Douglas W. Oldenburg,et al.  Three-dimensional inversion of airborne time-domain electromagnetic data with applications to a porphyry deposit , 2012 .

[52]  Y. Jeng,et al.  Integrated signal enhancements in magnetic investigation in archaeology , 2003 .

[53]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[54]  G. Cooper,et al.  Edge enhancement of potential-field data using normalized statistics , 2008 .

[55]  B. Bhattacharyya,et al.  Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies , 1977 .

[56]  Chein-Shan Liu,et al.  Optimally scaled vector regularization method to solve ill-posed linear problems , 2012, Appl. Math. Comput..

[57]  V. Dimri,et al.  Source depth characterization of potential field data of Bay of Bengal by continuous wavelet transform , 2006 .

[58]  Maurizio Fedi,et al.  Detection of potential fields source boundaries by enhanced horizontal derivative method , 2001 .

[59]  Misac N. Nabighian,et al.  The analytic signal of two-dimensional magnetic bodies with polygonal cross-section; its properties and use for automated anomaly interpretation , 1972 .

[60]  I. W. Somerton,et al.  Magnetic interpretation in three dimensions using Euler deconvolution , 1990 .

[61]  A. Spector,et al.  STATISTICAL MODELS FOR INTERPRETING AEROMAGNETIC DATA , 1970 .