Manifold differential evolution (MDE)

Computing centroidal Voronoi tessellations (CVT) has many applications in computer graphics. The existing methods, such as the Lloyd algorithm and the quasi-Newton solver, are efficient and easy to implement; however, they compute only the local optimal solutions due to the highly non-linear nature of the CVT energy. This paper presents a novel method, called manifold differential evolution (MDE), for computing globally optimal geodesic CVT energy on triangle meshes. Formulating the mutation operator using discrete geodesics, MDE naturally extends the powerful differential evolution framework from Euclidean spaces to manifold domains. Under mild assumptions, we show that MDE has a provable probabilistic convergence to the global optimum. Experiments on a wide range of 3D models show that MDE consistently out-performs the existing methods by producing results with lower energy. Thanks to its intrinsic and global nature, MDE is insensitive to initialization and mesh tessellation. Moreover, it is able to handle multiply-connected Voronoi cells, which are challenging to the existing geodesic CVT methods.

[1]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[2]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[3]  Ligang Liu,et al.  Fast Wavefront Propagation (FWP) for Computing Exact Geodesic Distances on Meshes , 2015, IEEE Transactions on Visualization and Computer Graphics.

[4]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[5]  睦憲 柳浦,et al.  Combinatorial Optimization : Theory and Algorithms (3rd Edition), B. Korte and J. Vygen 著, 出版社 Springer, 発行 2006年, 全ページ 597頁, 価格 53.45ユーロ, ISBN 3-540-25684-9 , 2006 .

[6]  Shi-Qing Xin,et al.  Intrinsic computation of centroidal Voronoi tessellation (CVT) on meshes , 2015, Comput. Aided Des..

[7]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[8]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[9]  Wenping Wang,et al.  GPU-Assisted Computation of Centroidal Voronoi Tessellation , 2011, IEEE Transactions on Visualization and Computer Graphics.

[10]  H. Saunders,et al.  Probability, Random Variables and Stochastic Processes (2nd Edition) , 1989 .

[11]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[12]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[13]  Shi-Qing Xin,et al.  Parallel chen-han (PCH) algorithm for discrete geodesics , 2013, ACM Trans. Graph..

[14]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[15]  Horst Reiner,et al.  Introduction to Global Optimization. Second Edition , 2000 .

[16]  Chunyan Miao,et al.  Solving the initial value problem of discrete geodesics , 2016, Comput. Aided Des..

[17]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[18]  Terje O. Espelid,et al.  Algorithm 706: DCUTRI: an algorithm for adaptive cubature over a collection of triangles , 1992, TOMS.

[19]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[21]  Dong-Ming Yan,et al.  Low-Resolution Remeshing Using the Localized Restricted Voronoi Diagram , 2014, IEEE Transactions on Visualization and Computer Graphics.

[22]  Leo Liberti,et al.  Introduction to Global Optimization , 2006 .

[23]  Ying He,et al.  Saddle vertex graph (SVG) , 2013, ACM Trans. Graph..

[24]  Martin Isenburg,et al.  Centroidal Voronoi diagrams for isotropic surface remeshing , 2005, Graph. Model..

[25]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[26]  Athanasios V. Vasilakos,et al.  On Convergence of Differential Evolution Over a Class of Continuous Functions With Unique Global Optimum , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[27]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[28]  Jing J. Liang,et al.  Novel benchmark functions for continuous multimodal optimization with comparative results , 2016, Swarm Evol. Comput..

[29]  Yong-Jin Liu Semi-Continuity of Skeletons in Two-Manifold and Discrete Voronoi Approximation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Liang Shuai,et al.  Centroidal Voronoi tessellation in universal covering space of manifold surfaces , 2011, Comput. Aided Geom. Des..

[31]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[32]  Charlie C. L. Wang,et al.  A unified framework for isotropic meshing based on narrow-band Euclidean distance transformation , 2015, Comput. Vis. Media.

[33]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[34]  Kai Tang,et al.  Construction of Iso-Contours, Bisectors, and Voronoi Diagrams on Triangulated Surfaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Charlie C. L. Wang,et al.  Robust and GPU-friendly Isotropic Meshing Based on Narrow-banded Euclidean Distance Transformation , 2015, PG.

[36]  Lin Lu,et al.  Global Optimization of Centroidal Voronoi Tessellation with Monte Carlo Approach , 2012, IEEE Transactions on Visualization and Computer Graphics.

[37]  Dong-Ming Yan,et al.  Non-Obtuse Remeshing with Centroidal Voronoi Tessellation , 2016, IEEE Transactions on Visualization and Computer Graphics.

[38]  B. Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[39]  S. Wandzurat,et al.  Symmetric quadrature rules on a triangle , 2003 .

[40]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[41]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .