A 4-GHz Active Scatterer in 130-nm CMOS for Phase Sweep Amplify-and-Forward

This article demonstrates the cooperative diversity improvement achieved using a 120- active scatterer built in 130-nm CMOS technology. The low-power all-analog device acts as a repeater, or relay, for phase sweep amplify-and-forward cooperative transmission. The device relies on microwave reflection to amplify, dynamically phase modulate, and reradiate the incident signal. This reduces the duration of the fades experienced in the indoor radio channel and improves error correction code performance. Radio channel propagation measurements collected using the relay prototype clearly show the effect of the phase modulation on fading and system level simulations conducted using the propagation data show a fivefold increase in coverage area.

[1]  Lin Wang,et al.  Performance of DCSK Cooperative Communication Systems Over Multipath Fading Channels , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  G. Messier,et al.  A 0.13-µm CMOS wireless reflector for phase sweep cooperative diversity , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[3]  Sebastian Magierowski,et al.  Implementation of an all-analog active reflector , 2010, CCECE 2010.

[4]  F. Ellinger,et al.  Integrated Active Pulsed Reflector for an Indoor Local Positioning System , 2010, IEEE Transactions on Microwave Theory and Techniques.

[5]  Wei-Zen Chen,et al.  A Single-Chip 2.5-Gb/s CMOS Burst-Mode Optical Receiver , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Sebastian Magierowski,et al.  An Integrated Active Reflector for Phase-Sweep Cooperative Diversity , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  Yair Linn,et al.  A Carrier-Independent Non-Data-Aided Real-Time SNR Estimator for M-PSK and D-MPSK Suitable for FPGAs and ASICs , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Sebastian Magierowski,et al.  Cooperative Phase Sweep Amplify-and-Forward Transmission , 2008, 2008 IEEE 68th Vehicular Technology Conference.

[9]  V. Fusco,et al.  Microwave reflection amplifier for detection and tagging applications , 2008 .

[10]  L. Wilson Pearson,et al.  Multitone Feedback Through Demodulating Log Detector for Detection of Spurious Emissions in Software Radio , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  P.V. Nikitin,et al.  Theory and measurement of backscattering from RFID tags , 2006, IEEE Antennas and Propagation Magazine.

[12]  I. Nicolaescu,et al.  Radar cross section of some simple and collected targets to be used for classification , 2006, 2006 First European Conference on Antennas and Propagation.

[13]  Peter R. Kinget Amplitude detection inside CMOS LC oscillators , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[14]  Armin Wittneben,et al.  Cooperative diversity by relay phase rotations in block fading environments , 2004, IEEE 5th Workshop on Signal Processing Advances in Wireless Communications, 2004..

[15]  Gregory W. Wornell,et al.  Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks , 2003, IEEE Trans. Inf. Theory.

[16]  E. van der Heijden,et al.  A 19-23 GHz integrated LC-VCO in a production 70 GHz fT SiGe technology , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[17]  W. Bachtold,et al.  A differential active patch antenna element for array applications , 2003, IEEE Microwave and Wireless Components Letters.

[18]  Stephen A. Maas,et al.  Nonlinear Microwave and RF Circuits , 2003 .

[19]  A. Pesavento,et al.  A wide linear range four quadrant multiplier in subthreshold CMOS , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[20]  E.H. Armstrong Some Recent Developments In The Audion Receiver , 1997, Proceedings of the IEEE.

[21]  R. Raut Wideband CMOS transconductor for analog VLSI systems , 1996 .

[22]  H. Oguey,et al.  CMOS Current Reference without Resistance , 1996, ESSCIRC '96: Proceedings of the 22nd European Solid-State Circuits Conference.

[23]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .

[24]  R. Meyer Low-power monolithic RF peak detector analysis , 1995, IEEE J. Solid State Circuits.

[25]  Fumiyuki Adachi,et al.  Combined effects of phase sweeping transmitter diversity and channel coding , 1992 .

[26]  D. K. Paul,et al.  Aspects of the design of low noise, negative resistance, reflection mode transistor amplifiers , 1991 .

[27]  G. Ghione,et al.  Analytical formulas for coplanar lines in hybrid and monolithic MICs , 1984 .

[28]  Invited Paw,et al.  Injection Locking of Microwave Solid-State Oscillators , 1973 .

[29]  E. S. Kuh,et al.  Design Theory of Optimum Negative-Resistance Amplifiers , 1961, Proceedings of the IRE.

[30]  Jr. P. Penfield Noise in Negative-Resistance Amplifiers , 1960 .

[31]  J.G. Linvill,et al.  Transistor Negative-Impedance Converters , 1953, Proceedings of the IRE.