On First-Order Fragments for Words and Mazurkiewicz Traces

We summarize several characterizations, inclusions, and separations on fragments of first-order logic over words and Mazurkiewicz traces. The results concerning Mazurkiewicz traces can be seen as generalizations of those for words. It turns out that over traces it is crucial, how easy concurrency can be expressed. Since there is no concurrency in words, this distinction does not occur there. In general, the possibility of expressing concurrency also increases the complexity of the satisfiability problem.

[1]  Kousha Etessami,et al.  First-order logic with two variables and unary temporal logic , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[2]  Dov M. Gabbay,et al.  Temporal logic (vol. 1): mathematical foundations and computational aspects , 1994 .

[3]  Howard Straubing,et al.  Locally trivial categories and unambiguous concatenation , 1988 .

[4]  Wolfgang Reisig,et al.  Petri Nets: Applications and Relationships to Other Models of Concurrency , 1986, Lecture Notes in Computer Science.

[5]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[6]  Larry Joseph Stockmeyer,et al.  The complexity of decision problems in automata theory and logic , 1974 .

[7]  Antonio Restivo,et al.  Star-Free Trace Languages , 1992, Theor. Comput. Sci..

[8]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[9]  Volker Diekert,et al.  The Book of Traces , 1995 .

[10]  Robert M. Keller,et al.  Parallel program schemata and maximal parallelism , 1972 .

[11]  D. Gabbay,et al.  Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .

[12]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[13]  Antoni W. Mazurkiewicz,et al.  Trace Theory , 1986, Advances in Petri Nets.

[14]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[15]  Jean-Eric Pin,et al.  A variety theorem without complementation , 1995 .

[16]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[17]  Neil Immerman,et al.  Structure Theorem and Strict Alternation Hierarchy for FO2 on Words , 2007, CSL.

[18]  Manfred Kufleitner Logical fragments for Mazurkiewicz traces: expressive power and algebraic characterizations , 2006 .

[19]  J. Humphrys,et al.  Beyond Words , 2006 .

[20]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[21]  Paul Gastin,et al.  An Elementary Expressively Complete Temporal Logic for Mazurkiewicz Traces , 2002, ICALP.

[22]  A. Mazurkiewicz Concurrent Program Schemes and their Interpretations , 1977 .

[23]  Paul Gastin,et al.  LTL Is Expressively Complete for Mazurkiewicz Traces , 2000, J. Comput. Syst. Sci..

[24]  Igor Walukiewicz,et al.  An Expressively Complete Linear Time Temporal Logic for Mazurkiewicz Traces , 1997, Inf. Comput..

[25]  Cnrs Fre,et al.  Model Checking a Path (Preliminary Report) , 2003 .

[26]  Robert M. Keller,et al.  Parallel Program Schemata and Maximal Parallelism I. Fundamental Results , 1973, JACM.

[27]  Neil Immerman,et al.  Structure Theorem and Strict Alternation Hierarchy for FO2 on Words , 2006, Circuits, Logic, and Games.

[28]  M. Schützenberger,et al.  Sur Le Produit De Concatenation Non Ambigu , 1976 .

[29]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[30]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[31]  Denis Thérien,et al.  DIAMONDS ARE FOREVER: THE VARIETY DA , 2002 .

[32]  Paul Gastin,et al.  Pure future local temporal logics are expressively complete for Mazurkiewicz traces , 2004, Inf. Comput..

[33]  Manfred Kufleitner Polynomials, fragments of temporal logic and the variety DA over traces , 2007, Theor. Comput. Sci..

[34]  Anca Muscholl,et al.  Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..

[35]  Jérémie Chalopin,et al.  On factorization forests of finite height , 2004, Theor. Comput. Sci..

[36]  Thomas Colcombet On factorisation forests , 2007, ArXiv.

[37]  Pascal Weil,et al.  Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.

[38]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[39]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[40]  Paul Gastin,et al.  Satisfiability and Model Checking for MSO-definable Temporal Logics are in PSPACE , 2003, CONCUR.

[41]  Volker Diekert,et al.  On First-Order Fragments for Mazurkiewicz Traces , 2007, Fundam. Informaticae.