Structure of the Replicating Complex of a Pol α Family DNA Polymerase

Abstract We describe the 2.6 A resolution crystal structure of RB69 DNA polymerase with primer-template DNA and dTTP, capturing the step just before primer extension. This ternary complex structure in the human DNA polymerase α family shows a 60° rotation of the fingers domain relative to the apo-protein structure, similar to the fingers movement in pol I family polymerases. Minor groove interactions near the primer 3′ terminus suggest a common fidelity mechanism for pol I and pol α family polymerases. The duplex product DNA orientation differs by 40° between the polymerizing mode and editing mode structures. The role of the thumb in this DNA motion provides a model for editing in the pol α family.

[1]  Peer Bork,et al.  SMART: a web-based tool for the study of genetically mobile domains , 2000, Nucleic Acids Res..

[2]  F. Wawner,et al.  Structural Features of AN , 1966 .

[3]  L. Blanco,et al.  Role of the first aspartate residue of the "YxDTDS" motif of phi29 DNA polymerase as a metal ligand during both TP-primed and DNA-primed DNA synthesis. , 1998, Journal of molecular biology.

[4]  N. Seeman,et al.  Sequence-specific Recognition of Double Helical Nucleic Acids by Proteins (base Pairs/hydrogen Bonding/recognition Fidelity/ion Binding) , 2022 .

[5]  H. Dressman,et al.  Retention of replication fidelity by a DNA polymerase functioning in a distantly related environment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[7]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[8]  L. Reha-Krantz Locations of amino acid substitutions in bacteriophage T4 tsL56 DNA polymerase predict an N-terminal exonuclease domain , 1989, Journal of virology.

[9]  S. Benkovic,et al.  Kinetic mechanism of DNA polymerase I , 1987 .

[10]  L. Blanco,et al.  A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type phi29 DNA polymerase. , 1999, Journal of molecular biology.

[11]  J. Drake A constant rate of spontaneous mutation in DNA-based microbes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Kuriyan,et al.  Crystal structure of an archaebacterial DNA polymerase. , 1999, Structure.

[13]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[14]  S. Benkovic,et al.  Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4. , 1992, Biochemistry.

[15]  C. M. Joyce,et al.  A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. S. Edgar,et al.  Physiological Studies of Conditional Lethal Mutants of Bacteriophage T4D , 1963 .

[17]  K. Johnson,et al.  Conformational coupling in DNA polymerase fidelity. , 1993, Annual review of biochemistry.

[18]  Gabriel Waksman,et al.  Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation , 1998, The EMBO journal.

[19]  T. Steitz,et al.  Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. , 1998, Current opinion in structural biology.

[20]  James R. Kiefer,et al.  Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal , 1998, Nature.

[21]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[22]  T. Steitz,et al.  Structure of DNA polymerase I Klenow fragment bound to duplex DNA , 1993, Science.

[23]  T. Steitz DNA- and RNA-dependent DNA polymerases , 1993, Structural Insights into Gene Expression and Protein Synthesis.

[24]  L. Reha-Krantz,et al.  Dynamics of bacteriophage T4 DNA polymerase function: identification of amino acid residues that affect switching between polymerase and 3' --> 5' exonuclease activities. , 1995, Journal of molecular biology.

[25]  T. Steitz,et al.  Crystal structures of the Klenow fragment of DNA polymerase I complexed with deoxynucleoside triphosphate and pyrophosphate. , 1993, Biochemistry.

[26]  S. Benkovic,et al.  Kinetic mechanism of DNA polymerase I (Klenow). , 1987, Biochemistry.

[27]  M. Sawaya,et al.  An open and closed case for all polymerases. , 1999, Structure.

[28]  E. Kool Replication of non‐hydrogen bonded bases by DNA polymerases: A mechanism for steric matching , 1998, Biopolymers.

[29]  Samuel H. Wilson,et al.  Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. , 1997, Biochemistry.

[30]  J. Ito,et al.  Compilation, alignment, and phylogenetic relationships of DNA polymerases. , 1993, Nucleic acids research.

[31]  J. Karam,et al.  Steady-state kinetic characterization of RB69 DNA polymerase mutants that affect dNTP incorporation. , 1999, Biochemistry.

[32]  E. L. Holbrook,et al.  Structure of an RNA internal loop consisting of tandem C-A+ base pairs. , 1998, Biochemistry.

[33]  L. Gold,et al.  Autogenous translational operator recognized by bacteriophage T4 DNA polymerase. , 1990, Journal of molecular biology.

[34]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[35]  K. Johnson,et al.  An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. , 1991, Biochemistry.

[36]  W A Hendrickson,et al.  Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Huber,et al.  Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  S. Benkovic,et al.  The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase. , 1995, Biochemistry.

[39]  J. Karam,et al.  Genetic mapping of the amino-terminal domain of bacteriophage T4 DNA polymerase. , 1987, Genetics.

[40]  T. Steitz,et al.  Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP , 2020, Nature.

[41]  W. Copeland,et al.  Mutational analysis of the human DNA polymerase alpha. The most conserved region in alpha-like DNA polymerases is involved in metal-specific catalysis. , 1993, The Journal of biological chemistry.

[42]  A. D. Clark,et al.  Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[43]  W. Hunter,et al.  Structural features and hydration of a dodecamer duplex containing two C.A mispairs. , 1987, Nucleic acids research.

[44]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[45]  Samuel H. Wilson,et al.  Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. , 1994, Science.

[46]  S. Benkovic,et al.  Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant. , 1991, Biochemistry.

[47]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.

[48]  A. F. Gardner,et al.  Determinants of nucleotide sugar recognition in an archaeon DNA polymerase. , 1999, Nucleic acids research.

[49]  S. Benkovic,et al.  DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. , 1989, Biochemistry.

[50]  T. Steitz,et al.  Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. , 1997, Cell.

[51]  T. Steitz,et al.  Crystal Structure of a pol α Family Replication DNA Polymerase from Bacteriophage RB69 , 1997, Cell.

[52]  W. Hunter,et al.  The structure of guanosine-thymidine mismatches in B-DNA at 2.5-A resolution. , 1993, The Journal of biological chemistry.

[53]  L. Blanco,et al.  A Novel Kinetic Analysis to Calculate Nucleotide Affinity of Proofreading DNA Polymerases: , 1995, The Journal of Biological Chemistry.

[54]  Talapady N. Bhat,et al.  Calculation of an OMIT map , 1988 .

[55]  P Argos,et al.  An attempt to unify the structure of polymerases. , 1990, Protein engineering.

[56]  J. Karam,et al.  DNA polymerase of the T4-related bacteriophages. , 2000, Progress in nucleic acid research and molecular biology.

[57]  S. Benkovic,et al.  Kinetic characterization of a bacteriophage T4 antimutator DNA polymerase. , 1998, Biochemistry.

[58]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[59]  T. Steitz,et al.  Building a Replisome from Interacting Pieces Sliding Clamp Complexed to a Peptide from DNA Polymerase and a Polymerase Editing Complex , 1999, Cell.

[60]  Smita S. Patel,et al.  Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. , 1991, Biochemistry.

[61]  Smita S. Patel,et al.  Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. , 1991, Biochemistry.

[62]  L. Beese,et al.  Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. , 2000, Journal of molecular biology.

[63]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[64]  S. Benkovic,et al.  The carboxyl terminus of the bacteriophage T4 DNA polymerase is required for holoenzyme complex formation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[65]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[66]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.

[67]  M. Blasco,et al.  Primer terminus stabilization at the phi 29 DNA polymerase active site. Mutational analysis of conserved motif KXY. , 1995, The Journal of biological chemistry.

[68]  J. Karam,et al.  Modular Organization of T4 DNA Polymerase , 1995, The Journal of Biological Chemistry.

[69]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[70]  A R Pavlov,et al.  Nucleotide-sequence-specific and non-specific interactions of T4 DNA polymerase with its own mRNA. , 2000, Nucleic acids research.

[71]  W. Konigsberg,et al.  Isolation, characterization, and kinetic properties of truncated forms of T4 DNA polymerase that exhibit 3'-5' exonuclease activity. , 1994, The Journal of biological chemistry.

[72]  M. Sundaralingam,et al.  Crystal structure of an RNA 16-mer duplex R(GCAGAGUUAAAUCUGC)2 with nonadjacent G(syn).A+(anti) mispairs. , 1999, Biochemistry.

[73]  Thomas A. Steitz,et al.  Structure of Taq polymerase with DNA at the polymerase active site , 1996, Nature.

[74]  T. Kunkel,et al.  Side Chains That Influence Fidelity at the Polymerase Active Site of Escherichia coli DNA Polymerase I (Klenow Fragment)* , 1999, The Journal of Biological Chemistry.