Multiset combinatorial batch codes

Batch codes, first introduced by Ishai, Kushilevitz, Ostrovsky, and Sahai, mimic a distributed storage of a set of n data items on m servers, in such a way that any batch of k data items can be retrieved by reading at most some t symbols from each server. Combinatorial batch codes, are replication-based batch codes in which each server stores a subset of the data items. In this paper, we propose a generalization of combinatorial batch codes, called multiset combinatorial batch codes (MCBCs), in which n data items are stored in m servers, such that any multiset request of k items, where any item is requested at most r times, can be retrieved by reading at most t items from each server. The setup of this new family of codes is motivated by recent work on codes which enable high availability and parallel reads in distributed storage systems. The main problem under this paradigm is to minimize the number of items stored in the servers, given the values of n, m, k, r, t, which is denoted by N(n, k, m, t; r). We first give a necessary and sufficient condition for the existence of MCBCs. Then, we present several bounds on N(n, k, m, t; r) and constructions of MCBCs. In particular, we determine the value of N(n, k, m, 1; r) for any n  ⌊k − 1/r⌋ (mk−1) − (m − k + 1)A(m, 4, k − 2), where A(m, 4, k − 2) is the maximum size of a binary constant weight code of length m, distance four and weight k − 2. We also determine the exact value of N(n, k, m, 1; r) when r ∊ {k, k − 1} or k = m.

[1]  Sushmita Ruj,et al.  Combinatorial batch codes: A lower bound and optimal constructions , 2012, Adv. Math. Commun..

[2]  Richard A. Brualdi,et al.  Combinatorial batch codes and transversal matroids , 2010, Adv. Math. Commun..

[3]  Csilla Bujtás,et al.  Relaxations of Hall's condition: Optimal batch codes with multiple queries , 2012 .

[4]  Csilla Bujtás,et al.  Turán numbers and batch codes , 2013, Discret. Appl. Math..

[5]  N. J. A. Sloane,et al.  Lower bounds for constant weight codes , 1980, IEEE Trans. Inf. Theory.

[6]  Eitan Yaakobi,et al.  Bounds and constructions of codes with multiple localities , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[7]  Eitan Yaakobi,et al.  Multiset combinatorial batch codes , 2018, Des. Codes Cryptogr..

[8]  Csilla Bujtás,et al.  Optimal batch codes: Many items or low retrieval requirement , 2011, Adv. Math. Commun..

[9]  H. Hanani,et al.  On steiner systems , 1964 .

[10]  Csilla Bujtás,et al.  Optimal combinatorial batch codes derived from dual systems , 2011 .

[11]  Ron AHARONI,et al.  On a possible extension of Hall's theorem to bipartite hypergraphs , 1990, Discret. Math..

[12]  Dimitris S. Papailiopoulos,et al.  Locality and Availability in Distributed Storage , 2014, IEEE Transactions on Information Theory.

[13]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.

[14]  Douglas R. Stinson,et al.  Combinatorial batch codes , 2009, Adv. Math. Commun..

[15]  Niranjan Balachandran,et al.  On an extremal hypergraph problem related to combinatorial batch codes , 2012, Discret. Appl. Math..

[16]  Natalia Silberstein,et al.  Optimal combinatorial batch codes based on block designs , 2016, Des. Codes Cryptogr..

[17]  Natalia Silberstein Fractional Repetition and Erasure Batch Codes , 2014, ICMCTA.

[18]  Rafail Ostrovsky,et al.  Batch codes and their applications , 2004, STOC '04.

[19]  L. Mirsky,et al.  Systems of representatives with repetition , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  Hazel Perfect,et al.  Systems of representatives , 1966 .

[21]  A. Rosa,et al.  2-( v , k , λ) Designs of Small Order , 2006 .

[22]  Csilla Bujtás,et al.  Combinatorial batch codes: Extremal problems under Hall-type conditions , 2011, Electron. Notes Discret. Math..